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Abstract

Person recognition from gait images is generally not ro-
bust to changes in appearance, such as variations of the
walking direction. In general conventional methods have
focused on training a model to transform gait features or
gait images to those at a different viewpoint, but the per-
formance gets worse in case the model is not trained at a
viewpoint of a subject. In this paper we propose a novel
gait recognition approach which differs a lot from existing
approaches in that the subject’s sequential 3D models and
his/her motion are directly reconstructed from captured im-
ages, and arbitrary viewpoint images are synthesized from
the reconstructed 3D models for the purpose of gait recog-
nition robust to changes in the walking direction. More-
over, we propose a gait feature, named Frame Difference
Frieze Pattern (FDFP), which is robust to high frequency
noise. The efficiency of the proposed method is demon-
strated through experiments using a database that includes
41 subjects.

1. Introduction

Person recognition methods are useful for various appli-
cations, such as surveillance applications for security oper-
ations and service robots coexisting with humans in daily
life. Gait is one of biometrics which do not require inter-
action with subjects and can be performed at a distance. In
general, existing gait recognition methods assume that cam-
eras are placed at locations where an entire body shape of a
person can be observed. However, if cameras are placed at
high locations, such as on UAV or the rooftops of tall build-
ings, for the purpose of wide area security operations, the
correct classification rate decreases. This is because the hu-
man body area, which is used to extract gait features, cannot
be captured sufficiently from overhead cameras.

To deal with this problem, we proposed shadow biomet-
rics, which is a biometrics method that uses the projected
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body area of the subject [8] [9]. The projected body area of
the subject, i.e. the shadow of the subject, is used to extract
biometric information from images taken by overhead cam-
eras. In [9], we focused on images taken at an oblique angle
with the ground so that both body and shadow areas of the
subject are captured enough. In these images, we can con-
sider that body and shadow areas contain body information
captured from two different viewpoints - camera and Sun
direction. Thus the use of both information from shadows
and information from directly observed body can provide
a higher correct classification rate than from either taken
alone. However, if the subject’s walking direction and the
position of the Sun are different from that in the database,
the appearances of both body and shadow areas are differ-
ent from those in the database. This causes that the correct
classification rate decreases.

The problem of appearance variations due to changes
of the subject’s walking direction compared with that in
the database is a common problem in gait recognition, and
gait researchers have been working on this topic [5] [12].
Kusakunniran et al. proposed a view transformation model
using Support Vector Regression to synthesize virtual view-
point images from captured images [10]. Felez et al. pro-
posed an approach which casts gait recognition as a bipartite
ranking problem [3]. The proposed method can learn fea-
tures invariant to covariate condition changes from different
people and different datasets. However, if training datasets
to learn models do not include images [10] / features [3]
of the same condition with the subject’s one, the perfor-
mance gets worse. We proposed a visual hull-based ap-
proach which synthesizes gait images at virtual viewpoints
using sequential 3D model of the walking subject [5]. This
method has an assumption that 3D models of the walking
subject are reconstructed in advance. However, if the 3D
models are not available, the visual hull-based method can-
not be used. Muramatsu et al. proposed a method, which
overcomes the drawback of [5], to generate an arbitrary
view transformation model [12]. The model is constructed
using a 3D gait database composed of non-subject multi-
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ple people’s 3D models. However, since the subject’s 3D
model is not included in the training dataset to learn the
view transformation model, the synthesized image may not
coincide to the real one.

1.1. Proposed method

In this paper we propose a novel gait recognition ap-
proach which differs a lot from existing approaches in that
the subject’s sequential 3D models and his/her motion are
directly reconstructed from captured images, and arbitrary
viewpoint images are synthesized from the reconstructed
3D models for the purpose of gait recognition robust to
changes in the walking direction. There are three challenges
we deal with in the proposed method.

1. To estimate the subject’s motion, markerless motion
capture technology [13] [2] can be used. In general
the markerless motion capture system prepares a 3D
shape model with bones in advance and fits the shape
model to a reconstructed 3D model of a subject for mo-
tion estimation (Fig. 1 (a)). However, if the 3D shape
model of the subject is not available, the motion of the
subject cannot be estimated (Fig. 1 (b)). Thus the 3D
shape model of the subject should be estimated at the
same time with the estimation of his motion.

2. The accuracy of motion estimation may not be good
enough for person recognition, due to self-occlusion.
One possible way of improving the accuracy is to in-
crease the number of cameras which captures images
of the subject. However, if the gait recognition sys-
tem is installed in public areas for security purposes,
in general an area is covered by a single camera, not
multiple cameras.

3. To obtain position information of the subject, images
taken from multiple viewpoints are necessary.

3D model
with bones

3D reconstructed
model of a subject

(b)(a)

3D model
with bones

3D reconstructed
model of a subject

?

Figure 1. (a) Motion estimation with a 3D shape model with bones,
(b) motion cannot be estimated correctly due to a 3D model which
does not fit to the subject. For the purpose of showing models
clearly, we place objects separately.

Figure 2. An example scenario using the proposed method.

To solve above three challenges, in the proposed method
we utilize a statistical 3D shape model to estimate the 3D
model of the subject at the same time with the motion esti-
mation [14] and we introduce a statistical gait motion model
to estimate his motion robust to self-occlusion. The statisti-
cal 3D shape model consists of an average 3D shape model
and several shape parameters, and by changing the shape
parameters various types of 3D shapes can be reconstructed
[14]. The statistical gait motion model consists of an aver-
age gait motion model and several gait parameters, and by
changing the gait parameters different gait motions can be
generated. In this paper, we call a statistical model which
combines both the statistical 3D shape model and the statis-
tical gait motion model. Besides, we take advantage of the
shadow biometrics, which allow us to obtain two different
viewpoint images using a single camera.

There are three possible scenarios to use the shadow bio-
metrics, in case that we assume that images are taken at an
oblique angle with the ground. The first one is that shadows
are projected in images of both training and test datasets,
so both shadow and body areas are available. The second
one is shadows are projected in images of test dataset, thus
both shadow and body areas are available in the test dataset
but only body area can be used in the training dataset. In
this case, after we reconstruct 3D model of a subject using
the proposed method as shown in Fig. 2, we synthesize an
image from a view point of the training dataset. The last
scenario is the other way round of the second scenario. In
this paper, we focus on the second scenario.

In the proposed method, first we extract body and
shadow areas of the subject, and then we estimate param-
eters of both statistical 3D shape model and statistical gait
model so that the statistical model fits to the reconstructed
3D model of the subject. Next, a virtual image of the statis-
tical model is synthesized from a viewpoint of the training
dataset. Finally we extract a newly proposed gait feature,
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named Frame Difference Frieze Pattern (FDFP), from syn-
thesized images, followed by person identification. The ad-
vantage of the statistical 3D shape model and the statistical
gait model is that by tuning parameters whole body shape
of the subject and motion can change. Thus even though
some of body areas are not visible in captured images due
to occlusions, the body shape and motion can be estimated
by changing parameters of the statistical model using non-
occluded areas, which can be obtained in captured images.

The remainder of the present paper is organized as fol-
lows. Section 2 describes the statistical 3D shape model
and introduces the statistical gait motion model. Sec-
tion 3 introduces the proposed method to estimate param-
eters of both statistical models and the newly proposed
gait features. Section 4 describes experiments performed
to demonstrate the efficiency of the proposed method, and
Section 5 presents our conclusions.

2. Statistical models

In this section, we first briefly describe the statistical 3D
shape model and then introduce the statistical gait motion
model. Both models are generated from training datasets of
multiple people.

2.1. Statistical 3D shape model

The statistical 3D shape model [14] was constructed by
using an AIST/HQL dataset [1], which consists of 3D mod-
els of 97 people (49 male and 48 female). The model con-
sists of an average 3D shape model and 11 shape param-
eters, and by changing the shape parameters various types
of 3D shapes can be reconstructed. Assume that the average
3D shape x̄, which is defined as x̄ = 1

NΣN
i=1xi (N is the to-

tal number of 3D models). Here, a 3D model of a person i is
defined as xi = (xi1, yi1, zi1, · · · , xik, yik, zik)

T (k is the
number of vertex points of a 3D model). The difference be-
tween the average 3D shape x̄ and a 3D model xi is defined
as dxi = xi− x̄. By applying eigenvalue decomposition to
(dx1, dx2, · · · , dxN )T , eigenvectors and eigenvalues are
obtained. Finally, a statistical 3D shape model is defined as

x = x̄+Eb. (1)

Here, E = (e1, e2, · · · , et) is eigenvectors and b =
(b1, b2, · · · , bt)T is shape parameters. t = 11 with 95 %
contributing rate. By changing the shape parameters, var-
ious types of 3D shapes can be reconstructed as shown in
Fig. 3.

2.2. Statistical gait motion model

The 3D models used in section 2.1 are the ones of people
standing. To generate a statistical gait model we use a 4D
gait database [7] consisting of 3D models for the duration

Figure 3. Statistical 3D shape model consisting of an average 3D
shape model and shape parameters

Figure 4. An example sequence of 3D models in the 4D gait
database.

of one gait cycle. The database comprises 41 subjects with
four sequences for each subject (Fig. 4).

First, we estimate motion of each walking person in the
database using a markerless motion capture system [13]. As
we mentioned in Section 1.1, a 3D model with bones for
each person is necessary, so we estimate the 3D model with
bones using the statistical 3D shape model first. In concrete,
we estimate parameters of the statistical 3D shape model
so that the statistical 3D shape model can fit to the recon-
structed 3D model of each person. Moreover, we embedded
a bone model, which has 30 degree of freedom in total, to
the statistical 3D shape model, so that positions of all joints
can move with the change of parameters of the statistical
3D model.

After motions of all gait sequences are estimated, we
generate the statistical gait motion model as follows. First,
since the number of frames in one gait cycle differs among
walking sequences, we normalize the number of frames in
one gait cycle into a certain number F (we set F = 22
in experiments). We basically use the same methodology
to generate the statistical gait model with the method for
the statistical 3D shape model, but the difference is that we
apply a frequency analysis to motions before we apply the
eigenvalue decomposition. The reason why we apply a fre-
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quency analysis is as follows. Gait is a repetitive motion,
thus once parameters are tuned properly, gait motion for the
duration of one gait cycle can be reconstructed even though
gait motion for a part of one gait cycle is not obtained.

Let us define an average angle vector Us
j =

(us
(1,j), u

s
(2,j), · · · , us

(F,j))
T , and us

(i,j) is defined as an
angle of a joint j (1 ≤ j ≤ J , J is the num-
ber of joints) and a gait sequence s (1 ≤ s ≤ S,
S is the total number of gait sequences). We apply
a discrete cosine transform to Us

j and obtain a power
spectrum vector ds

j = (ds(1,j), d
s
(2,j), · · · , ds(F,j))

T . A
power spectrum vector of all joints is defined as Ds

=
(ds(1,1), d

s
(2,1), · · · , ds(F−1,J), d

s
(F,J)), and finally we define

a vector K = (D1,D2, · · · ,DS).
The eigenvalue decomposition is applied to K, and the

statistical gait motion model is defined as

K = K̄ +Nw. (2)

Here, N = (n1,n2, · · · ,nt) is eigenvectors and w =
(w1, w2, · · · , wt)

T is gait parameters. t = 20 with 95 %
contributing rate. To reconstruct joint angles, we apply
an inverse discrete cosine transform to K. By changing
the gait parameters, various types of motions can be recon-
structed as shown in Fig. 5.

(a) Average gait model for the duration of one gait cycle

(b) Motion variations with the change of gait parameters

Figure 5. Statistical gait motion model consisting of an average
gait motion and gait parameters. (a) average gait motion and (b)
motion variations with the change of gait parameters.

3. Person identification robust to viewpoint
changes

In this section, we explain details of the proposed method
and a new gait feature, named Frame Difference Frieze Pat-
tern (FDFP).

3.1. Shape and motion estimation using shadow
biometrics

The advantage of the use of both body and shadow areas
is that we can use two viewpoint images using a single cam-
era. This is useful to estimate the position information of
the subject, which is necessary for motion estimation with
high accuracy. The position information of the subject can
be estimated using both shadow and body areas with the as-
sumption that the pose of the Sun is known with respect to
the camera. In this paper, we assume that the position in-
formation of the subject for the duration of one gait cycle is
known, but instead we focus on showing the effectiveness
of the proposed concept. The position estimation will be
our future work.

As we mentioned in section 1.1, the scenario we focus
on is that both shadow and body areas are available in the
test dataset but only body area can be used in the training
dataset. Thus, after we estimate a 3D shape and gait motion
of a subject, we synthesize an image from a viewpoint of
the training dataset as shown in Fig. 2. To estimate the 3D
shape and gait motion of the subject, we estimate shape pa-
rameters and gait parameters of the statistical model using
the following procedure.

1. First, we set an initial position of the statistical model
to the position the subject. Here, since we have the in-
formation of positions of the subject for the duration of
one gait cycle, his walking direction with respect to the
camera can be calculated. Next, we virtually project a
shadow of the statistical 3D model to the ground using
the position information of the Sun, and synthesize an
image from a virtual viewpoint as shown in Fig. 6.

2. After we obtain a virtual image, we extract a silhou-
ette area, followed by a contour extraction of body and
shadow areas (Fig. 7 (a)). We apply the same process
to an image of the subject to extract a contour of the
subject as shown in Fig. 7 (b).

3. At each point pi on the contour of the image of the sub-
ject the nearest neighbor point qj is obtained, and the
evaluation value d is calculated by d = Σi(pi − qj)

2.
The shape and gait motion parameters are estimated
using the steepest descent method to minimize the
evaluation value.
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Figure 6. Flow of the proposed method to estimate shape and mo-
tion parameters of the statistical model.

(a) Virtual image

(b) Test dataset

Figure 7. Silhouette and contour extraction of a virtual image (a)
and an image in the test dataset (b).

4. Step 1 to 3 are repeated for each image of one gait
cycle.

After we reconstruct the statistical model with estimated
shape and gait parameters, we synthesize a virtual image
which are taken with the same viewpoint of the training
dataset.

3.2. Frame Difference Frieze Pattern (FDFP)

In the statistical shape model and the statistical gait mo-
tion model, we use eigenvectors up to 95 % contributing
rate, thus we omit eigenvectors with higher frequency. This
causes a small difference between the estimated statistical
model and the 3D reconstructed model of the subject, and

this may result in higher frequency noise. So in this sec-
tion, we propose a new gait feature, named Frame Differ-
ence Frieze Pattern (FDFP), which is designed to be robust
to higher frequency noise. As the name suggests, the FDFP
is inspired by the Frieze Pattern [11].

First, we calculate a frame difference image between a
frame f and a frame f −Δf as follows.

S(x, y) =

{
255 (I(f, x, y) = I(f −Δf, x, y))

0 (I(f, x, y) �= I(f −Δf, x, y))
(3)

Here, f is a frame ID in the duration of one gait cycle (1
≤ f ≤ F and F=22), and Δf is set from 1 to 15. Example
images of Δf = 1 and Δf = 2 are shown in Figs. 8 (a) and
(b). The FDFP is calculated using frame difference images
which are generated from silhouette images for the duration
of one gait cycle. The FDFP has two feature vectors, one is
FDFProw generated along the vertical axis and the other
one is FDFPcol generated along the horizontal axis.

FDFProw(y, f) = ΣxS(x, y, f) (4)

FDFPcol(x, f) = ΣyS(x, y, f) (5)

Examples of FDFProw and FDFPcol are show in Fig. 8
(c).

The concept of the FDFP is similar to the Shape
Variance-Based (SVB) Frieze Pattern [11], but the differ-
ence is as follows. In the SVB Frieze Pattern, the authors
set a key frame, which is a double-support position, and cal-
culated a frame difference as the difference between a frame
f and the key frame. On the other hand, our FDFP does not
require to detect the key frame and a frame difference is
calculated as the difference between a frame f and a frame
f − Δf . Moreover, by changing the value Δf , the FDFP
can represent much more information.

3.3. Person identification

We identify the subject based on the combination of the
nearest neighbor approach and the voting-based method [7].
During the training phase, we extract gait features using the
FDFP from each image in the training sequences and then
build a database. Then, during the identification phase, gait
features are extracted from each synthesized image of a sub-
ject’s sequence in the test dataset. At each frame of the sub-
ject’s sequence, a person who has the nearest gait feature in
the training dataset is voted, and this process is repeated for
the duration of one gait cycle. Finally, a person who gets
the most votes is chosen as the subject.

4. Experiments

This section presents the results of person identification
robust to changes in the walking direction. To prove the
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(a) Frame difference (Δf = 1)

(b) Frame difference (Δf = 2)

(c) Examples of Frame Difference Frieze Pattern (Δf = 1)

Figure 8. Frame Difference Frieze Pattern

effectiveness of the statistical shape model and the statisti-
cal gait motion model, we carried out experiments using the
4D gait database. The database comprises 41 subjects with

(a) An example of images taken
at a virtual camera θ1, which are
used as test datasets.

(b) An example of images taken
at a virtual camera θ2, which
are used as training datasets.

Figure 9. Example images of test and training datasets.

four sequences for each subject, so totally there are 164 gait
sequences. In this experiment, we synthesized images by
using a virtual camera which is placed at a viewpoint θ1
with respect to 3D models in the database as shown in Fig.
9(a), and we used these images as test images. Regarding
the training datasets, we placed a virtual camera at a view-
point θ2, and synthesized images as shown in Fig. 9(b).

4.1. Evaluation of the estimated statistical model

First we evaluated the statistical model with estimated
parameters by the proposed method qualitatively and quan-
titatively. In a top row in Fig. 10 (a) we show examples
of silhouette images at a view point θ1 in the test dataset.
The second row shows example silhouette images synthe-
sized at a view point θ1 from the statistical models whose
parameters were estimated by the proposed method. Since
parameters of the statistical models are estimated using im-
ages at view point θ1, it is easily expected that synthesized
images from the estimated statistical models are similar to
silhouette images in the test dataset. As we mentioned in
section 1.1, the advantage of the use of the statistical model
is that it can estimate motion and 3D model in areas which
are not visible from the camera due to occlusions. To see
the effectiveness of the statistical model, let us see the re-
sults from a view point θ2 as shown in Fig. 10 (b). From
these results, we can verify the proposed method can recon-
struct 3D model and motion in occluded areas.

We evaluated the accuracy of the proposed method quan-
titatively. Since in experiments test images are synthesized
from 3D reconstructed models of walking subjects, we can
compare the accuracy of the statistical model with estimated
parameters from reconstructed 3D models. We calculated
a sum of minimum distances between the statistical model
and the reconstructed 3D model at each frame, and we ob-
tain average distance and standard deviation using models
for the duration of one gait cycle. Figure 11 (a) shows re-
sults of all 41 people in case that no parameters of the statis-
tical model are estimated, and Fig. 11 (b) shows results in
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case that parameters are estimated by the proposed method.
From these results, it is clear the proposed method worked
well even though we use just two viewpoint images (i.e.
shadow and body areas).

(a) View point θ1

(b) View point θ2

Figure 10. 3D shape and motion estimation. Synthesized images
from a viewpoint θ1 (a) and a viewpoint θ2 (b).

4.2. Person identification using the proposed
method

In next experiments, we identified people using the pro-
posed method and compared the performance of the pro-
posed gait feature (FDFP) with other existing gait features,
such as Gait Energy Image (GEI) [4], Active Energy Im-
age (AEI) [15], and Affine Moment Invariants (AMI) [6],
which showed good performance in other gait databases.
The evaluation was performed using a rule similar to leave-
one-out cross validation. In other words, when we selected
one gait image sequence from test datasets, we eliminated
an image sequence corresponding to this selected image se-
quence from the database.

(a)

(b)
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Figure 11. Average and standard deviation of distances between
reconstructed 3D models and statistical models with estimated pa-
rameters.Results for statistical models without parameter estima-
tion and (b) results for statistical models with parameters estimated
by the proposed method.

First, we used image sequences at the viewpoint θ1 for
test and training datasets, and Table 1 shows results using
GEI, AIE, AMI and the proposed FDFP. Here, in the AMI-
based method there is a parameter which is used to divide
a silhouette area into multiple areas. Thus we changed this
parameter in experiments. From these results, it is clear the
proposed gait feature FDFP showed the best performance.

Next, we used images sequences at the viewpoint θ1 for
test dataset and images sequences at the viewpoint θ2 for
training dataset, and Table 2 shows results. The results of
existing methods, GEI, AIE, and AMI are worse than those
of the viewpoint θ2. On the other hand, the proposed FDFP
showed the best performance thanks to the robustness to the
high frequency noise.

5. Conclusions

We herein proposed a method by which to identify peo-
ple robust in changes in the walking direction. The pro-
posed method differs significantly from existing approaches
in that the subject’s sequential 3D models and his/her mo-
tion were directly reconstructed from captured images, by
introducing the statistical shape model and the statistical
gait motion model. Then arbitrary viewpoint images are
synthesized from the reconstructed 3D models for the pur-
pose of gait recognition robust to changes in the walking
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GEI [4] 78.66

AEI [15] 78.05

The number of divided areas
AMI [6] 1 5 9 13 15

54.27 89.02 90.24 89.02 89.02

Frame interval : Δf
Proposed 1 5 9 13 15

FDFP 73.17 98.17 99.39 99.39 99.39

Table 1. Person identification using image sequences at the view-
point θ1 for test and training datasets [%].

GEI [4] 34.15

AEI [15] 46.95

The number of divided areas
AMI [6] 1 5 9 13 15

9.76 23.78 24.39 28.66 28.66

Frame interval : Δf
Proposed 1 5 9 13 15

FDFP 39.02 74.39 84.15 85.98 83.54

Table 2. Person identification using image sequences at the view-
point θ2 for test and training datasets [%].

direction. We also proposed the new gait feature, named
Frame Difference Frieze Pattern (FDFP). We carried out ex-
periments using the 4D database, which included data for 41
people, and demonstrated that the proposed method outper-
formed conventional methods.

Our future work includes to identify people using images
by a camera placed outside.
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