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Abstract

Conventional methods of gait analysis for person iden-
tification use features extracted from a sequence of cam-
era images taken during one or more gait cycles. An im-
plicit assumption is made that the walking direction does
not change. However, cameras deployed in real-world en-
vironments (and often placed at corners) capture images
of humans who walk on paths that, for a variety of rea-
sons, such as turning corners or avoiding obstacles, are not
straight but curved. This change of the direction of the ve-
locity vector causes a decrease in performance for conven-
tional methods. In this paper we address this aspect, and
propose a method that offers improved identification results
for people walking on curved trajectories. The large diver-
sity of curved trajectories makes the collection of complete
real world data infeasible. The proposed method utilizes a
4D gait database consisting of multiple 3D shape models
of walking subjects and adaptive virtual image synthesis.
Each frame, for the duration of a gait cycle, is used to esti-
mate a walking direction for the subject, and consequently
a virtual image corresponding to this estimated direction is
synthesized from the 4D gait database. The identification
uses affine moment invariants as gait features. Experiments
using the 4D gait database of 21 subjects show that the pro-
posed method has a higher recognition performance than
conventional methods.

1. Introduction

Person identification methods have been used for a wide
variety of applications, such as surveillance or use of service
robots co-located with humans to provide various services
in daily life. Gait is one of biometrics that do not require
interaction with a subject and can be performed from a dis-
tance [11] [15] [12]. Person identification methods which
extract features from gait images taken by a camera have
been used with good results for human identification [6] [2]
[14] [9]. However, since image-based gait recognition is
sensitive to appearance changes, the correct classification
rate gets low in case that the subject’s appearance is differ-
ent from that in the database. One of possible situations in
which this problem occurs is the case that the subject’s wak-
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ing direction in respect to the camera is different from that
in the database (e.g. in Fig. 1(a) walking direction (1) of the
subject is different from the direction (2) in the database).

To deal with this problem, several methods have been
proposed so far. Makihara et al. introduced a view transfor-
mation model to synthesize virtual viewpoint images from
captured images [14]. In this method, the view transfor-
mation model is obtained from training datasets of mul-
tiple people which were taken from multiple view points.
Iwashita et al. introduced a 4D gait database consisting
of multiple 3D shape models of walking subjects and a
method which identified a subject and estimated his walking
direction with synthesized virtual viewpoint images from
3D models in the database [7]. Kusakunniran proposed
a method to create a View Transformation Model (VIM)
from the different point of view using Support Vector Re-
gression (SVR) [10]. These methods have an implicit as-
sumption that people walk straight and their walking direc-
tion does not change during one gait cycle (i.e. he does not
walk on curved trajectory). However, in reality people walk
on curved trajectories for turning a corner or avoiding an
obstacle as shown in Fig. 1 (b).

The large diversity of curved trajectories makes the col-
lection of complete real world data in a database infeasible.
This change of the direction of the velocity vector of walk-
ing people causes a decrease in performance for conven-
tional methods, which assume the walk direction is straight.
In this paper we propose a method to identify people walk-
ing on curved trajectories. To the best of our knowledge,
this is the first time such a method is introduced to deal
with the problem of the decrease of the identification per-
formance due to walking on curved trajectories.

The cause of the performance decrease is that, when a
subject walks on a curved trajectory, the observation angle
¢ between the walking direction of the subject and direc-
tion of the camera to the subject is gradually changed at all
frames in one gait cycle as shown in Fig. 1 (b) (hereafter
we call this as ”local angle change”). This problem occurs
in fact even on a straight walk [3] as shown in Fig. 1 (c).
Akae et al. showed that the local angle changes in one gait
cycle affects the performance of gait identification theoreti-
cally, especially in case that the distance between a camera



and a subject is small and side view images are captured
[3]. Figures 1 (c) and 2 (b) show examples of images from
top and actual images, and it is clear that observation angles
between the first frame and the last frame in one gait cycle
are different. To deal with this problem, Iwashita et al. [8]
introduced a method for estimating local angles of a subject
walking straight, and an experiment with gait images was
carried out to illustrate the method.

In this paper, we expand this method [8] to estimate lo-
cal angles of the subject walking on a curved trajectory.
The proposed method utilizes a 4D gait database consist-
ing of sequential 3D models of multiple people walking
straight and adaptive virtual image synthesis. In the pro-
posed method, one first estimates a walking direction of
a subject at each image for the duration of one gait cycle.
Next, an observation angle at each frame is estimated from
estimated walking direction, and a virtual image is synthe-
sized from each 3D model for the duration of one gait cycle
in the 4D gait database so that an observation angle of a syn-
thesized image is the same with that of a frame of the sub-
ject. Here, a virtual images is synthesized from a 3D model
whose phase is the same with that of a frame of the subject,
and virtual images are synthesized from all people in the
database. Finally, the subject is identified using affine mo-
ment invariants extracted from images as gait features. Our
experiments show the effectiveness of the proposed method
using two types of gait images: (i) images of people walk-
ing on curved trajectories. (ii) images of people walking
straight (to evaluate the theory introduced by Akae [3]).

This paper is organized as follows. Section 2 describes
the details of the proposed person identification method.
Section 3 describes experiments performed using the 4D
gait database. Section 4 presents our conclusions.
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Figure 1. (a) Walking direction change, (b) local angle changes

(walking on a curved trajectory), and (c) local angle changes

(walking straight).

2. Person identification robust to local angle
changes in one gait cycle

In this section, we explain the local angle changes in one
gait cycle when a subject walks either on a curved trajectory
or straight, and then introduce the proposed method.

2.1. Local angle changes in one gait cycle

The local angle at each frame in one gait cycle is defined
with the azimuth angle ¢, and elevation angle ¢, at each
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Figure 2. Walking on a curved trajectory and straight. (al) and
(bl) are the first frames in one gait cycle, and (a2) and (b2) are the
last frames.

position P, in one gait cycle as shown in Fig. 3(a). When
the subject walks on a curved trajectory as shown in Fig.
3(a), the local angle varies gradually from frame to frame;
this deteriorates the performance of gait identification by
conventional methods, which have an implicit assumption
that the subject walks straight.

When the subject walks straight and the azimuth an-
gle is around 4+90 degree and the elevation angle is small
(front/back view images are captured), the local angle
change between frames in one gait cycle is small. However,
if the azimuth angle is small and camera’s position is close
to the subject, then the local angle change between frames

in one gait cycle cannot be ignored.
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Figure 3. Local angle changes in one gait cycle.

2.2. The proposed person identification method

In this section we describe the details of the proposed
method. To summarize, the main steps of processing are as
follows.

Step 1 One first estimates a walking direction of a sub-
ject at each image for the duration of one gait cycle as



shown in Fig. 3.

Step 2 An observation angle at each frame is estimated
from estimated walking direction, and a virtual image
is synthesized from each 3D model for the duration of
one gait cycle in the 4D database (Fig 4) so that an
observation angle of a synthesized image is the same
with that of a frame of the subject as shown in Fig. 5.
Here, positions (P, P,, Py) and angles (¢>‘},1, gzﬁi,n,
¢'p,,) correspond to those in Fig. 3. Virtual images are
synthesized from all people in the database

Step 3 Affine moment invariants are extracted as gait fea-
tures from captures images of a subject and synthe-
sized images, respectively, and the subject is identified.

The 4D gait database includes time-series 3D models of all
subjects which were built in advance. The following offers
more details.

(a) 3D model

(b) A sequence of 3D models

Figure 4. Examples of 3D models in the database.
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Figure 5. Examples of synthesized virtual images.

2.2.1 Estimation of local angles

In this section we explain a method for estimation of the
local angle. Estimating the local angle at each frame in one
gait cycle is equivalent to estimating rotation and translation
matrices (“Rp, and “I’p,) from a coordinate system of each
foot position £/ to a coordinate system of the camera 2¢
as shown in Fig. 6 (a) (“Ap, =[“Rp, | “Tp,]). To estimate

rotation and translation matrices at each frame in one gait
cycle, we estimate foot position and walking direction in
3D space from each captured image. We assume here that
the external and internal camera parameters and the position

of the floor are known.
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Figure 6. Estimation of transformation matrix of (a) a subject and
(b) a virtual camera.

A background subtraction method is applied to captured
images to extract silhouette areas. The foot position in the
images are estimated as follows: (1) principal component
analysis is applied to a silhouette area of each image, and
(2) two intersection points of the first principal component
and the convex hull of the silhouette area are calculated,
and the lower point along the first principal component is
estimated as the foot position as shown in Fig. 7.

Next, foot positions “7Tp, (0 <n < N, N is the number
of frames in one gait cycle) in 3D space are determined by
projecting the estimated foot positions on 2D images onto
the floor. Here, “T'p, is a transformation matrix from a
coordinate system of each foot position X7 to that of 3D
space 2. There are several methods to estimate the walk-
ing direction, and one of them is to estimate walking di-
rection at each foot position from difference of the current
foot position and its previous one. However, for example
when people walk straight, in general they swing from side
to side. This swinging can be considered as outliers, and the
walking direction calculated by the above method may be
different from the real walking direction. Thus, to decrease
the influence of outliers, we apply the least square method
to foot positions of one gait cycle. In case the subject walks
on a curved trajectory, the walking trajectory is estimated
by fitting a 2D polynomial to the foot positions of one gait
cycle. In case the subject walks straight, the walking tra-
jectory is estimated by fitting a line to the foot positions.
Here, to distinguish the walking direction straight and on
curved trajectories, at first we fit a line to the foot positions.
Then if the sum of distances between the fitted line and foot
positions is large, we consider the subject walks on curved
trajectory. Finally, the walking direction at each foot posi-
tion in 3D space is estimated from a differential of the fitted
function.



From the estimated walking direction in 3D space and
the normal direction of the floor, a rotation matrix “ Rp, is
determined. Finally the rotation matrix “Rp, from a co-
ordinate system of each foot position X to that of the
camera X and the translation matrix “I’p, are calculated
as “‘Rp, =° Ry, YRp, and “Tp, =° R, ("Tp, —" T¢) as
shown “Ap_ in Fig. 6 (a). Here, °R,, and "1 are obtained
from external camera parameter.
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Figure 7. Foot position detection.

2.2.2 Synthesis of virtual images from 3D models

The proposed method relies on a 4D gait database consist-
ing of time-series 3D models of walking subjects which are
measured using multiple cameras [8]. The details of the
database are explained in Section 3. Figure 4 shows ex-
amples of 3D models of a walking person in the database.
Note that the database consists of 3D models of multiple
people who walked straight. To synthesize virtual view-
point images, at first the foot position “Tp,, (0 < m < M,
M is the number of models in one gait cycle) of each 3D
model of the walking person in the database is estimated
as the intersection point of the floor and the first principal
component, which is calculated by applying the principal
component analysis to each 3D model. Then the walking
direction of the person is estimated from a line fitted to the
foot positions by the least square method, and a rotation
matrix “ Rp,, at each foot position is calculated. Finally, as
shown in Fig. 6 (b) the external parameter (*’ A,.) of a cam-
era at a virtual viewpoint is calculated from “Rp,, “Ip,,
“Rp,,,and “Tp, , and a virtual viewpoint image is synthe-
sized from a 3D model M odel,,,. Here, we assume that the
phase of the first frame of one gait cycle of the subject is
the same with that of each person in the database. But the
number of frames of the subject in one gait cycle may be
different from that of a person in the database, so in general
a phase of each frame of the subject should be aligned to
that of a synthesized image. In this paper, we align them by
m = & X M as a linear solution. Virtual images are syn-
thesized from 3D models at all people in the database with
respect to each subject.

2.2.3 Extraction of gait features and person identifica-
tion

For feature extraction, at first a silhouette area is scaled to
a uniform height, set to 128 pixels, and the average im-
age [9Y¢"%9¢ from images of one gait cycle is defined by
Joverage (g y) = % 1y I(z,y,1) (L is either N for an
average image of a subject or M for an average image of
synthesized images of each person in the database). Fig-
ure 8 shows an example of average images. Then, affine
moment invariants are extracted from the average image as
gait features [9]. In [9], Iwashita showed that affine mo-
ment invariants had the same discrimination capability with
GEI [6] and DFT [14] even thought the number of features
of affine moment invariants is much smaller than those [6]
[14].

Affine moment invariants are moment-based descriptors,
which are invariant under a general affine transform. The
moments describe shape properties of an object as it ap-
pears. For an image the centralized moment of order (p+ q)
of an object O is given by

ftpa = Z:z:(w,y)eo(gc —29)"(y —yg) I(z,y). (D)

Here, x, and y, are the center of the object. In our
method we used thirty affine moment invariants I =

{hL,Is,....,I3}, and we show two of them [4] [5].
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In this paper, we divide each average image into K mul-
tiple areas as shown in Fig. 8 to obtain features from local
areas, and extracted gait features from each area. Here, K
is the number of divided areas.

Figure 8. An example of average images (K=4).

2.2.4 Person identification

In the proposed method, we use the nearest neighbor as the
classifier. In the training phase, we extract gait features by



the affine moment invariants from synthesized virtual im-
ages, and then build a database. Then in the identification
phase, gait features are extracted from silhouette images of
a subject and the subject is identified by the classifier.

Shakhnarovich et al. also utilized 3D models recon-
structed with multiple cameras and synthesized images at
a virtual camera from 3D models [13]. However, they used
multiple cameras for capturing images of subjects and syn-
thesize images from side view only. On the other hand, our
proposed method uses only one camera for capturing im-
ages of subjects and is able to synthesize images from arbi-
trary view points.

3. Experiments

This section shows results of person identification exper-
iments using a database which includes the 4D gait database
and 2D images of people walking on curved trajectories and
straight as test datasets. This database comprises of 21 sub-
jects, with 4 sequences for each subject. All people walked
straight as shown in the dashed line (2) in Fig. 9. Multi-
ple 3D models were reconstructed by the visual hull tech-
nique with 16 cameras placed in a studio as shown in Fig.
9. We utilized sequential 3D models of all subjects as train-
ing datasets and 2D images captured from a camera as test
datasets.

Test datasets consist of images of two ways of walking;
(walkt) walking on a curved trajectory and (walkii) walk-
ing straight. For capturing images of people walking on
curved trajectories as shown the dashed line (1) in Fig.9
(walkt), we selected camera A. The trajectory is part of
a circle with radius 1.5 m. The test datasets consist of 21
subjects with 1 sequence. Each gait sequence consists of 15
~ 20 images. The height of the camera is approximately
1.2 [m], and the distance from each camera to the center of
the studio is 3.5 [m].

For test datasets of people walking straight (walkii), we
utilized captured images taken from a camera (either cam-
era A or camera B). People walked straight as shown the
dashed line (2) in Fig.9, and camera A and camera B cap-
tured frontal view gait images and side view gait images,
respectively. The test datasets for each camera consist of 21
subjects with 4 sequences. Note that for synthesizing virtual
images of a subject we eliminated 3D models created from
gait images of the same sequence with that of the subject.

There are gait databases publicly available [1], which are
for changes of walking direction, and these databases in-
clude 2D gait images captured by multiple cameras. How-
ever, since these databases does not include information of
camera parameters, 3D models of walking people cannot be
obtained. Besides, these databases contain images of people
walking only straight. Thus we do not use these databases
in our experiments.

|
I |
Camera B| l -
' Camera A

Figure 9. Experimental setting.

3.1. Identification of people walking on curved tra-
jectories

In the first experiments, we applied the proposed method
to gait images of people walking on curved trajectories. In
the experiments, we applied two methods: (i) the proposed
method and (ii) the conventional method [8]. Figure 10(a)
shows examples of captured images of a subject, and Figs.
10(b) and (c) show those corresponding synthesized images
by the propose method and the conventional method [8],
respectively. From these results, it is clear that the proposed
method could synthesize similar silhouette of actual images.

To extract gait features, we separate each average im-
age into 1, 2, and 4 areas (K=1, 2, and 4), and we com-
bined gait features from all areas for identification. The
correct classification rate by the conventional method [8]
and the proposed method were 14.3 % and 71.4 % with six-
teen affine moment invariants, which showed high perfor-
mance in the experiments in the next section. The proposed
method showed much higher performance than the conven-
tional method. Moreover, to show the effectiveness of the
affine moment invariants, we extracted gait features from
synthesized images with GEI [6]. Here, to compare the dis-
crimination capabilities of the affine moment invariants and
GEI, we didn’t apply any dimensionality reduction methods
to GEI. The correct classification rate was 28.6 %, which
was much lower than the affine moment invariants. The
reason is as follows. In both methods using affine moment
invariants and GEI, features are extracted from an average
image, and each pixel value of this image can be affected
due to slight error of the estimation of the walking direc-
tion. Moreover, as we explain in the next paragraph, since
the subject walked on a small circle, the number of frames
in one gait cycle is less than that in the database. So this can
also change pixel values of the average image. In GEI gait
feature is extracted at each pixel, so this may be sensitive to
the change of pixel values. On the other hand, in the affine
moment invariants, gait features, which represents the shape
and pixel values of the area, are extracted at each area, so
this is robust to the change of pixel values compared with
GEL



When we checked captured images of people walking
on curved trajectories, we noticed that some of subjects
changed their way of walking due to the small circle. There
are some changes which affected their way of walking, such
that (i) the length of stride of a subject got short compared
with that of the subject walking straight, when the subject
walked on a small circle, (ii) the distance between the sub-
ject’s left and right legs in the frontal plane got bigger or
smaller than that of the subject walking straight. Figure 11
shows an example of captured images in the test datasets, an
image of the same person from the database with Fig.11(a),
and synthesized image of Fig.11(a) from the 3D model of
Fig.11(b) by the proposed method. In Figures 11(a) and (b)
the person was in the same phase, but it is clear the length
of stride in Fig.11(a) is shorter than that in Fig.11(b). In
test datasets of 21 people, 3 of them changed their lengths
of stride bigger than those of the rest of people. When we
removed these 3 people from the test datasets, the correct
classification rates by the conventional method and the pro-
posed method were improved to 16.7 % and 83.3 %, respec-
tively.

From above results, the change of their way of walking
affected the discrimination capability of gait features from
average images. Near term is as follows. When a sub-
ject walks, his appearance may be similar to the one in the
database even if his way of walking is different from that in

the database, so we utilize features from these images for
classification.
(a2) frame# 68 (b2) (c2)

(a) Examples of captured ~ (b) Synthesized images by  (c) Synthesized images by
images the proposed method the conventional method

(cl)

Figure 10. Examples of actual images of a subject walking on a
curved trajectory and synthesized virtual images of the subject by
the proposed method and the conventional method [8].

(a) An example of captured  (b) An example of images  (c) Synthesized image by

images from camera A the proposed method

Figure 11. (a) An example of actual images of a subject walking
on a curved trajectory, (b) an example of captured images of the
same person walking straight with (a), and (c) synthesized image
of (a).

3.2. Identification of people walking straight

In the last experiments, we applied the proposed method
to images of people walking straight. Figure 12(al) and
(a2), which were captured from camera A show the first
frame and the last frame of one gait cycle, respectively,
and Fig.12(b) show those corresponding synthesized vir-
tual viewpoint images. Here, for the purpose of visualiza-
tion of the effectiveness of the proposed method, we uti-
lized 3D models from images of the same sequence with
that of the test dataset. From the results of Fig. 12, the
proposed method synthesized similar images to the actual
images compared with the conventional method.

To evaluate the effectiveness of the proposed method, we
applied one of conventional methods [7] to the same test
datasets. This conventional method [7] utilizes a fixed lo-
cal angle (e.g. a local angle at the center position in one
gait cycle) to synthesize virtual images of one gait cycle,
so a synthesized image at a frame with different local angle
from the fixed local angle is different from actual image.
This method extracted gait features from average images by
affine moment invariants in the same way with the proposed
method. Figure 12(c) shows synthesized images which cor-
respond to Fig.12(a).

Figures 13(a) and (b) show examples of captured images
from camera B and synthesized images by the proposed
method, respectively. These results show that the synthe-
sized images are similar to actual images, and especially in
Fig.13(b1) the subject’s arm was separated from one’s body
like the one in Fig.13(al). The subject’s arm in the syn-
thesized image by the conventional method (Fig. 13(cl))
was connected to one’s body. From these results, the im-
ages synthesized by the proposed method are more similar
to captured images.

Figure 14 show the results of correct classification rates
from camera A by the proposed method and the conven-
tional method. The highest correct classification rates by the
proposed method and the conventional method were 90.5
% and 86.9 %, respectively. Figure 15 shows the results of
correct classification rates from camera B by the proposed
method and the conventional method with respect to the
change of number of affine moment invariants. The highest
correct classification rates by the proposed method and the
conventional method were 85.7 % and 79.8 %, respectively.

Akae et al. showed that the local angle changes in
one gait cycle affects the performance of gait identifica-
tion especially in case that side view images are captured
[3]. From above results, when local angle changes are
small (camera A), the results obtained using the proposed
method are only slightly better than those by the conven-
tional method, due to little local angle changes. However,
when local angle changes are big (camera B), the proposed
method showed better results than those by the conventional
method. These results support the correctness of [3].



(a2) frame# 31
(a) Examples of captured  (b) Synthesized images by
images the proposed method

(c2)
(c) Synthesized images by
the conventional method

Figure 12. Comparison of virtual images by the proposed method
and the conventional method [7] (camera A).
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(c) Synthesized images by
the conventional method

@ "
(a) Examples of captured  (b) Syntheslzed images by
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Figure 13. Comparison of virtual images by the proposed method
and the conventional method [7] (camera B).
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Figure 14. Correct classification rates (camera A).
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Figure 15. Correct classification rates (camera B).

4. Conclusions

We proposed in this paper the method to identify peo-
ple walking on curved trajectories by utilizing a 4D gait
database and adaptive virtual images synthesis. In this

method, we estimated a walking direction of a subject in 3D
space from foot positions of the subject, and we estimated
in one gait cycle an observation angle between the walking
direction of the subject and direction of the camera to the
subject at each frame. Next, a virtual image based on local
angle at each position was synthesized from 3D models of
all people in the database. Then the subject was identified
by gait features extracted by affine moment invariants. We
carried out experiments with the 4D database, and showed
the effectiveness of the proposed method.
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