
Control Architecture for Service Drone
in Informationally Structured Environment

Farouk Ghallabi, Akihiro Kawamura, Yoonseok Pyo, Tokuo Tsuji, and Ryo Kurazume

Abstract— In this paper, we present a control architecture
that enables a service drone to navigate in an informationally
structured environment (ISE) and to accomplish a specific
service task autonomously based on the ROS-TMS frame-
work. The ROS-TMS is a ROS-based distributed information
management system for ISE. It manages a variety of sub-
systems ranging from sensing by distributed sensors to motion
planning and behavior control for service robots. The proposed
architecture is designed as a component of the ROS-TMS, and
consists of a navigation system that solves a path planning
in ISE and a flight control system by a behavior-based finite
state machine. The navigation of the drone is allowed by an
optical motion tracking system consisting of distributed infrared
cameras managed by the ROS-TMS. A graphical user interface
is designed to provide simple manipulation of a service task by
a drone. Service experiments have been conducted to validate
the performance of the architecture.

I. INTRODUCTION

Unmanned aerial vehicle (UAV), generally known as a
drone, is used in many situations where manned flight is
considered to be difficult, too risky, or in a few cases
impossible. In recent years, the use of these unmanned
aircrafts, especially quadcopters has become widespread in
many fields as they possess great locomotive abilities and
have proved very efficient in performing tasks. Such tasks
include mainly civil missions, for example the traffic surveil-
lance [1], [2], the monitoring of oil and gas pipelines and
power lines [3], missions of civil security such as the people
detection [4]. Many other uses are being developed in various
fields like agricultural spraying [5], vegetation monitoring
[6], region mapping, promotional films for tourism and
sports, ecological surveys, fire extinguishing, etc. Hence,
these flying robots are the subject of continuous labor and
research in order to provide drones that can carry out their
missions with the least fail probability as possible.

The aim of this research is to develop an application
using a parrot platform for human daily life assistance in
an informationally structured environment (ISE). The ISE is
an intelligent environment where a number of sensors are
embedded. Various information such as events occurred in
the environment, positions and situation of objects, humans,

Farouk Ghallabi is with ENSTA ParisTech, 1024,
Boulevard des Maréchaux, 91762 Palaiseau Cedex, France
farouk.ghallabi@ensta-paristech.fr

A. Kawamura, T. Tsuji and R. Kurazume are with Faculty of
Information Science and Electrical Engineering, Kyushu University,
744, Motooka, Nishi-ku, Fukuoka, Japan {kawamura,tsuji,
kurazume}@ait.kyushu-u.ac.jp

Y. Pyo is with Graduate School of Information Science and Electrical
Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, Japan
pyo@irvs.ait.kyushu-u.ac.jp

and robots are sensed and stored structurally in a database.
We have been developing the ROS-TMS framework [7] in
ISE, which is a ROS-based distributed information man-
agement system. The ROS-TMS manages a variety of sub-
systems ranging from sensing by distributed sensors to
motion planning, and behavior control for service robots.
The control architecture for a service drone proposed in this
paper is designed as a component of the ROS-TMS. The
architecture consists of a navigation system that solves a
path planning problem in ISE, a non-linear flight control
system for a drone, and a behavior control system by a
behavior-based finite state machine. In addition, a graphical
user interface is designed to provide simple manipulation of
the drone.

The rest of the paper is organized as follows. After
introducing the concept of ISE and ROS-TMS in Section II,
we will explain the drone platform in Section III. In Sections
IV and V, the control system for a drone consisting of a path
planning system and non-linear flight control system will
be introduced. In Section VI, we will show the graphical
interface for making a service task by a drone. Finally,
experimental results in a room will be shown in Section VII.

II. INFORMATIONALLY STRUCTURED ENVIRONMENT
AND ROS-TMS

A. Informationally Structured Environment

Many researches to design autonomous systems have been
conducted in robotic field. The basic idea is to develop robots
that take decisions without human assistance. Doing such
a work is not trivial and requires some conditions to be
satisfied. In fact, robots cannot execute tasks autonomously
without interacting with the physical world. Therefore, the
information about the environment is of key importance for
designing autonomous systems. Various sensor devices have
been designed to sense some characteristics of the physical
world. However, until today, no single sensor is able to
provide all of the information about the environment. Thus,
robot platforms are equipped with many sensors to achieve
tasks. For instance, global positioning system (GPS) is used
to localize a robot in the 3D world, inertial measurement
units are used to sense accelerations and angular velocities,
wheel encoders are used to measure the speed or distance of
a wheel travels, etc. Collecting all kinds of sensors on robots
is obviously not achievable due to the hardware capacity and
resource limitation. An informationally structured environ-
ment (ISE) is a concept that supports robot’s knowledge by
offering different sensor modalities distributed in the world.
In the ISE, a number of sensors are embedded not only

2015 IEEE/SICE International Symposium on System Integration (SII)
December 11-13, 2015. Meijo University, Nagoya, Japan

978-1-4673-7241-1/15/$31.00 ©2015 IEEE 611

on a robot but also in an environment. Additionally, sensed
information is stored structurally in a database. If a robot
requests an information to the database, the information is
sent back to the robot immediately.

As an example of the ISE, we have been developing an
intelligent room named Big Sensor Box (B-sen) as shown in
Fig. 1. In B-sen, various sensors are embedded such as laser
scanners, RGB-D cameras, intelligent cabinets, intelligent
refrigerator, floor sensing system, etc. For tracking positions
of human, robots, and objects, Vicon motion capture system
is installed. This sensor detects positions of human, robots,
and objects in B-sen accurately. Vicon system detects objects
through a passive optical motion capture technique, which
uses retroreflective markers tracked by infrared cameras as
illustrated in Fig. 2. Therefore, in this study, many markers
are placed on a drone, as illustrated in Fig. 3, so that we
can get the orientation and position information of the drone
in B-sen. The Vicon system has been used for team motion
control of multiple quadcopters [8], [9], [10]. However, in
these systems, the frame rate of the position data is quite
high. It is 100∼375 [Hz]. In our system, since the vicon
system is one of the embedded sensors in ISE, such a high
bandwidth cannot be assigned to the vicon system due to
the limitation of the available bandwidth. In our system, the
frame rate of the vicon data is about 10∼100 [Hz] and it
causes unstable behaviors for the drone in some cases.

Fig. 1. An informationally structured environment named Big Sensor Box
(B-sen)

Fig. 2. Vicon motion capture system (Bonita) and a retroreflective marker

Fig. 3. Drone covered by retroreflective markers

The information gathered by the sensors including Vicon
is processed and sent to a centralized management system
[11] which, in turn, broadcasts it via a local network to

all available robots. The management system uses ROS to
manage data and to publish it. The software developed is
called ROS TMS (Town Management System). In the next
subsection, ROS TMS architecture is briefly described.

B. ROS TMS architecture

ROS TMS [7] is a software designed to manage infor-
mation received from sensors distributed in ISE. The data
is stored in a local database, processed according to each
task, and delivered to all robot services. Data management,
processing, and scheduling are executed using more than 90
ROS modules, as listed below and illustrated in Fig. 4:

• The user request (TMS UR) is for communicating with
the user by using a remote controllers, smartphones,
tablets, and other portable devices, interpreting the
commands sent by the user and delivering it to the task
scheduler.

• The task scheduler (TMS TS) receives the commands
from the task request and manages the executions of
these commands.

• Sensor and robot controller modules (TMS SD and
TMS RC) are responsible for interpreting the data from
sensors and computing the commands to execute each
task.

Intelligent cabinetSmartPal IV

SmartPal V

Intelligent refrigeratorTracker (Vicon)

Laser range finder

Wheeled chair robotKXP robot

Service Target

Tablet

Server

Board PC

Sensor & Robot

User

TMS_UR : User Request

TMS_TS : Task Scheduler

TMS_SD

Sensor Driver

TMS_SS

Sensor System

TMS_RC

Robot Controller

TMS_SA

State Analyzer

TMS_RP

Robot Planning

T
M

S
_

D
B

 : D
ata B

ase

Sensor Robot

DB

Server

File

Server

Fig. 4. ROS TMS architecture

As ROS TMS is based on ROS, data broadcasting is done
by ROS publisher nodes. For instance, in order to get Vicon
data, we need to subscribe to a specific ROS node. This node
reads data from the database and publishes it through a local
network.

612

III. PARROT AR.DRONE PLATFORM

We have been working on Parrot Ar.drone 2.0 platform
shown in Fig. 5. This platform has 3-axis gyroscope and
accelerometer, ultrasound sensor, two cameras: the front
camera with high resolution used for recording images and
videos, the bottom camera with lower resolution and used to
estimate the altitude of the drone.

Fig. 5. Parrot Ardrone 2.0 and front camera

Parrot platform is also equipped with a cortex A8 micro-
processor, and this processing unit uses the onboard sensors
to stabilize the system, to maintain a fixed altitude, to
control the pitch, roll and yaw angles. Parrot is controlled
by sending four commands u = (ux, uy, uz, uψ), and all of
them should be in [−1, 1]. The (ux, uy) commands control
the horizontal speeds in the x and y directions respectively.
The uz command controls the vertical speed, and the uψ
controls the angular velocity around the vertical axes z. As
we mentioned above, the microprocessor executes an inner
loop that controls the pitch, roll, and yaw angles. Thus
the control commands are simply percentages of maximum
values of these parameters, positive and negative values
determine the direction of the movement. To control the
drone, Wifi connection must be established and specific
commands must be sent. As we use ROS, we have been
using ardrone autonomy [12].

IV. MAP REPRESENTATION AND PATH PLANNING

As we mentioned in the introduction, the system has to
solve a path planning problem in ISE and control a drone
motion to track the generated path. Thus, a dynamic model
is of particular value to understand the drone behavior and to
design a robust controller. The following sections will deal
with these problems and will demonstrate the methods used
to solve them.

A. Occupancy grid map

The goal of this part is to solve a path planning problem
in ISE. In ISE, all of the necessary information including the
structure and positions of obstacles are obtained beforehand.
Thus this is of key importance for designing autonomous
systems and for finding shortest, or optimal, path between
two points. In this study, we plan to develop a path planning
algorithm as follows:

1) Localize the drone in the environment
2) Input a goal position by GUI device
3) Compute the shortest path between initial and goal

positions

4) Compute a safe path (avoiding existing obstacles).
To do that, we need to represent the environment. Starting
from a 3D model, as shown in Fig. 6, we created a 2D
occupancy grid map in which only xy plane is considered to
simplify the planning problem. Ideally, since the drone lives
in a 3D world, a 3D map should be considered in the future.

Fig. 6. 3D model of the environment

Since the indoor hull of the drone is about 517mm ×
451mm [13] and the dimension of the environment is
12.5m × 4.5m, we selected 0.5m as the resolution of the
grid map. Therefore, the occupancy grid map consists of
25× 9 grids. In practice, to insure safe flights, some virtual
obstacles are added, for instance, this is convenient to fill
narrow places and unreachable regions for the drone and to
insure a safe distance from true obstacles.

Finally, for completion of the work, the drone position is
read from Vicon sensors and marked on the map. Figure 7
shows a graphical display of the map using Matlab. White
squares refer to obstacle-free spaces, black ones refer to
obstacle spaces, and the gray one is the drone position.

B. Dijkstra’s algorithm

Now that we defined a 2D map, a Dijkstra’s algorithm is
implemented to find a shortest path between two positions.
Dijkstra’s algorithm uses a weighted graph G = (E, V). The
set V represents the set of vertices of the graph G, and the
set E is the set of couples (u, v) ∈ V 2. For each couple
(u, v), we define a cost function w(u, v), which must be
nonnegative, i.e: w(u, v) � 0.

In our case, the map elements are labeled from 1 to 255
(25× 9). The set V is constructed as

V = {i ∈ 1, 2, .., 255, such that element i of the map is

free(no obstacle)}, (1)

613

x

y

Fig. 7. Occupancy grid map

where V is the set of obstacle-free spaces in the occupancy
grid map. Now, we need to construct the set E. Our approach
consists in reducing the movements taken by the drone into
four elementary movements: {forward (F), backward (B), left
(L), right (R)}, that means, from a given vertex, maximum
four vertices are possible to be selected.

The last thing to do is defining the cost function w. Let u
and v be two adjacent vertices. Suppose that we are currently
in vertex u then

w(u, v) =

{
1, if v is reachable

∞, if v is not reachable
(2)

V. BEHAVIOR CONTROL BY FINITE STATE MACHINE

A. Quadcopter dynamics

The drone is a rigid body that lives in a six degrees of
freedom parametrized by a translation and orientation vec-
tors. The translation vector can be identified as the position
of its center of mass x = (x, y, z) and the orientation vector
can be parametrized according to roll-pitch-yaw convention
(θ, φ, ψ). Forces applied on the system are generated by
four motors and propellers, these forces induce three torques
(τx, τy, τz), around three body axes as shown in Fig. 8.

Fig. 8. Quadcopter parameters

Let’s denote by f the total thrust generated by the four
propellers, RRPY the rotation matrix, and m the drone mass.
According to roll-pitch-yaw convention one representation of
the matrix RRPY is

RRPY =

⎛
⎝CψCθ CψSθSφ − SψCφ CψSθCφ + SψSφ
SψCθ SψSθSφ + CψCφ SψSθCφ − SψSφ
−Sθ CθSφ CθCφ

⎞
⎠

(3)

For simplicity, we denote the terms cos θ and sin θ by Cθ
and Sθ, respectively.

1) Dynamics: Acceleration of the center of mass can be
derived from Newton’s law

ẍ = (RRPY f − fg)/m (4)

Let f = (0, 0, f)T and fg = (0, 0,−g)T , the equations of
motion are:

ẍ =
CφSθCψ + SφSψ

m
f (5)

ÿ =
CφSθSψ − SφCψ

m
f (6)

z̈ =
CφCθ
m

f − g (7)

Let’s make a simple interpretation of these equations and
point out some remarks. The generated thrust is the sum
of the forces produced by the system {motor+propeller}.
In fluid mechanics, the force generated by a propeller is
proportional to the square of the rotational speed of each
motor. Therefore, the values of motor speeds are required to
know f . However, in some platforms, like parrot ar.drone, we
do not have access to this information. As a consequence, the
value of f is considered as an unknown function. This said,
using the equations of motion may not be simple and requires
knowledge about f or about its estimate. Our approach is
planned to solve this problem and to simplify the 3D dynamic
model so that we can design a suitable feedback controller.

B. Behavior based control approach

In order to simplify the dynamic model expressed in the
previous subsection, behaviors have been implemented to
reduce the degrees of freedom and to make the control
design easy. Before starting demonstrating the method, it is
convenient to start by defining the meaning of behaviors in
robotics. Ronald C.Arkin defines in his book [14] a behavior
as a reaction to a stimulus. Stimulus has different forms,
for instance if we consider a mobile robot navigating in an
unknown environment one behavior can be ’avoid-obstacle’.
This behavior is not active until an obstacle is detected,
hence ”obstacle-detected?” can be seen as a stimulus to
”avoid-obstacle” behavior. Many approaches have been used
to model behaviors. Ronald mentioned in the same book
three approaches to express behaviors.

1) Stimulus-response (SR) diagram
2) Functional notation
3) Finite state acceptor (FSA) diagram
Our case study uses the third approach to express the

behaviors implemented for parrot platform. “FSAs are best
used to specify complex behavioral control systems where
entire sets of primitive behaviors are swapped in and out
of execution during the accomplishment of some high-level
goal” [14]. It is represented by a set of behavior states and
transitions between them. A transition can be expressed by
{condition+action}. Figure 9 shows a simple FSA with two
states and one transition.

614

State A State B

Condition / Action

Fig. 9. Finite state acceptor diagram

1) Model Simplification: In this part, we will describe
steps which have been taken to simplify the model. Indeed,
in the Path Planning section, the generated path is a simple
set of discrete 2D points (xref , yref). This does not include
the altitude of the drone z and suppose that it moves only in a
2D world. Moreover, orientation is not expressed so that for
a fixed (xref , yref) we have infinite values of ψ ∈ [0, 2π].
This suppose that during trajectory tracking, ψ and z have
fixed values which is not always satisfied. That’s why to keep
validating these assumptions. The behaviors are implemented
to control orientation and altitude of the drone as illustrated
in the following points:

1) Controlling the orientation (yawControl)
Consider the room model showed in Fig. 7, two major
directions can be identified.

• The drone is moving in the x-positive direction so
that ψ = 0

• The drone is moving in the x-negative direction so
that ψ = π

The yawControl behavior uses a proportional controller
to control the orientation. Thus, the control command
sent to the drone is uψ = K1(ψ−ψref) where ψref =
{0, π}

2) Controlling the altitude (altitudeControl)
This behavior is for controlling the altitude at a fixed
height z = zref . This behavior also uses a proportional
controller to control the altitude. The command sent is
uz = K2(z − zref)

3) 2D path tracking (pathTracking) This behavior is
for tracking the reference points (xref , yref) generated
by the path planning algorithm. The control technique
used in this behavior will be discussed in the next part.

If we consider that during the 2D path tracking, the altitude
remains constant, i.e z = zref , vertical acceleration can be
set to 0 and then we can compute the value f . Conforming to
(7) and to the result z̈ = 0, the expression of f is deduced as
f = mg

CθCφ
. Using the new expression of f and the possible

values of ψ we retrieve the following systems:

ẍ = ±g tan(θ) (ψ = 0 or π) (8)

ÿ = ∓g tan(φ)
cos(θ)

(ψ = 0 or π) (9)

z̈ = 0 (10)

One extra behavior can be added for the parrot platform
which is hover mode. In fact, hover command enables

the drone to maintain a fixed position (x, y, z), this is
convenient to insure safety when the previous behaviors are
swapped in and out during execution.

altitudeControl

HOVER pathTrackingyawControl

q3

q4

q2

q2

q1q1

Fig. 10. Finite State Acceptor diagram

Figure 10 illustrates behaviors and transitions imple-
mented as described in this section. As it was mentioned,
transition can be viewed as simple condition q, the notation
q̄ refers simply to the negative of condition q. Transitions
are described as follows:

• q1 = ‖z − zref‖ > ε1
• q2 = ‖ψ − ψref‖ > ε2 and ‖z − zref‖ < ε1
• q3 = q̄1, q̄2 and ‖(x, y)− (xref , yref)‖ > ε3
• q4 = ‖(x, y)− (xref , yref)‖ < ε3,

where ε1, ε2 and ε3 are positive values fixed throughout
experiments. We used ε1 = 0.2 [m], ε2 = 0.2 [deg] and
ε3 = 0.4 [m] in the experiments, respectively. Note that as
the step value for the grid map described in the previous
section is 0.5 m, it is convenient to have ε3 < 0.5, otherwise
we will not have satisfying results. Indeed, take the example
of ε3 = 1, the pathTracking behavior is inactive when the
condition q4 is satisfied, or ε3 = 1 is like allowing the
tracking error to be represented by two squares in the map,
hence the goal position might not be tracked in the desired
square. Moreover, transitions are defined in a manner that
there is a predefined execution order. For instance, condition
q2 cannot be true until condition q̄1 is true. The execution
orders are

1) altitudeControl
2) yawControl
3) pathTracking
The implementation of this diagram has been computed

using Stateflow simulink toolbox.

C. 2D position control

Now that we simplified the dynamic model using behavior-
based design, let’s get down to the details of the pathTracking
behavior. We saw that the pathTracking behavior is intended
to provide a control approach for tracking 2D paths generated
by the path planning algorithm. In this part, (8) and (9) in
case (ψ = 0) are considered, note that the same work is done
for the case (ψ = π).

We want the drone to track a reference points (xref , yref).
As we mentioned in Section 2, the input commands for

615

parrot platform are percentages of certain maximum values
for these angles.Thus, the input commands are (θdes, φdes),
where θdes is the desired angle for roll, and φdes is the
desired angle for pitch. Equations (8) and (9) can be written
as

ẍ = g tan(θdes), (11)

ÿ = −g tan(φdes)
cos(θdes)

. (12)

Suppose that we want to design θdes and φdes in a way
that we transform the 2D dynamics equations ((11) and (12))
to a second order system defined by

ẍ = α1ẋ+ β1x, (13)
ÿ = α2ẏ + β2y. (14)

This system can be written in the state-space form ẋ = Ax ,
where x = (x, ẋ, y, ẏ)T and

A =

⎛
⎜⎜⎝

0 1 0 0
β1 α1 0 0
0 0 0 1
0 0 β2 α2

⎞
⎟⎟⎠ . (15)

The system is asymptotically stable only if the eigenvalues of
A have strict negative real parts. Equations (11), (12), (13),
and (14) yield the following system:

g tan(θdes) = α1ẋ+ β1x (16)

−g tan(φdes)
cos(θdes)

= α2ẏ + β2y (17)

−g tan(φdes) = cos(θdes)(α2ẏ + β2y) (18)

−g tan(φdes) = cos

(
arctan

(
α1ẋ+ β1x

g

))
(α2ẏ + β2y).

(19)
The control inputs sent to the drone are

θdes = arctan

(
α1ẋ+ β1x

g

)
(20)

φdes = − arctan

(
cos(arctan(α1ẋ+β1x

g))(α2ẏ + β2y)

g

)
.

(21)
Note that we set ẋ = ẋref − ˜̇x, ẏ = ẏref − ˜̇y, x = xref − x̃,
and y = yref − ỹ in (20) and (21). ˜̇x, ˜̇y ,x̃, and ỹ are current
velocities and positions obtained by Kalman filter in the next
section, and ẋref , ẏref , xref , and yref are target velocities
(ẋref = ẏref = 0) and next reference positions.

Let’s point out some remarks. As it has been mentioned in
section 2, control commands must be in [−1, 1] or (20) and
(21) do not guarantee that we can satisfy such a condition.
Three steps are taken to get rid of this problem. First, in the
choice of the coefficients α1, α2 and β1, β2, for that reason,
simulations are running to pick out acceptable coefficients.
Second, as the control commands are percentages of φmax
and θmax, desired angles θdes and φdes are divided by θmax
and φmax. Finally, saturation functions are added to eliminate
unexpected overshoots.

1) Outer loop/Inner loop: The onboard software uses
these commands (20) and (21) to control roll and pitch. As
we do not know exactly what algorithm is running inside the
system, many experiments have been conducted to estimate
the control parameters running behind the scenes. In [15],
the influence of control commands as a first order linear
model is described so that the real pitch and roll angles as
the following equations:

θ̇ + λ1θ = c1θdes, (22)
φ̇+ λ2θ = c2φdes. (23)

In order to estimate λ1 and λ2, step commands are sent to
the drone, i.e: a set of fixed values of θdes and φdes, angular
measurements are collected from the onboard sensors for
few seconds. Figure 11 shows an example of an angular
response for θdes = αθmax, where α = 0.4 and θmax = 0.21
[rad]. The shape of the curve validates approximating the
response as a first order system. Let’s write (22) and (23) in
the Laplace domain:

θ(s) =
c1

s+ λ1
θdes, (24)

φ(s) =
c2

s+ λ2
φdes. (25)

Due to the symmetric geometry of the drone we can assume
that roll and pitch follow the same response so that we can
assume that λ1 = λ2 = λ and c1 = c2 = c.


[d

eg
]

Time [s]

Step input

Fig. 11. Examples of roll responses

Using these data in System Identification toolbox in
Matlab enables as to have an estimation of (c, λ). These
parameters are of particular value for the state estimation
and Kalman filtering process in the next part.

Now that we determined (c, λ), two independent loops
are running. The outer loop is going to compute the desired
angles according to the desired position as described above.
The onboard loop, the inner loop, is going to stabilize
the system around these commands. Figure 12 resumes the
architecture of Outer/Inner loops.

616

Outer loop Inner loop

xref

yref

des

des

(x,x). (y,y).

Fig. 12. Inner/outer loops

D. State estimation and Kalman filter

In the previous part, (20) and (21) are computed using
(x, ẋ, y, ẏ). This implicitly supposes that information on
position and velocity is available and with no errors. In
practice, none of these two assumptions is true. Vicon data
only provides position and orientation. Moreover, there is
no guarantee to have a noiseless data. That’s said, a state
estimation and filtering techniques are required for good
computation of feedback control. A Kalman filter is a good
estimator for our case, and thus we adopted the Kalman
filter for state estimation. Control System toolbox in Matlab
provides a simple Simulink block to implement it. This
block requires measurement data and input commands and
outputs the estimate of x which we will be used for the
control techniques discussed in the previous parts. Figure 13
illustrates a completion of Fig. 12 integrating Kalman filter
and Vicon data.

Outer loop Inner loop

xref

yref

des

des
(x,x)

.
(y,y)

.

Kalman filter Vicon data

(x,y,z)

(,)

   

Fig. 13. General control schema

VI. GRAPHICAL USER INTERFACE

Now that we already solved the two major problems (Path
planning and feedback control), we want to offer a simple
way to manipulate drone system. Consequently, any user
can easily get benefit from the application that we have
developed. A very simple way to do that is using Graphical
User Interface Editor (GUIDE) in Matlab. The GUI must
provide the following options

• Manual takeoff and Land buttons
• Emergency land
• Extra information including battery level and the drone

state
• Real time localization of the system in the map
• Input the goal position and generate the 2D path
• Follow the generated path

The graphical user interface design is based on callback
functions to execute desired tasks. Callback functions are

executed once the user clicks on the corresponding button.

Fig. 14. Graphical user interface

Let’s explain the button functions shown in Fig. 14.
Basically, 5 major blocks are illustrated in the GUI: Map,
Generate path, Extra info, Takeoff/Land, Move the drone.
The Map block enables the user to input the goal position
by clicking on one of the white squares of the map image
and provides a real time localization of the drone. Generate
path block uses the goal position as input and generate
a possible path from the drone initial. Takeoff/Land block
affords manual takeoff and land commands, it also offers an
emergency button ’reset’ that stops the drone motors during
the flight and reset the software running onboard, and a
’hover’ button in case when the user wants to keep the drone
in fixed position. Extra info block shows information about
battery level and drone state. The drone battery level is of key
importance for insuring safe flights and avoiding accidental
power off.

VII. EXPERIMENTS

We conducted a service experiment in B-sen. The service
scenario of the experiment is as follows. Firstly, someone
stands in front of the entrance door and tries to enter into the
room. Then the user requests to ROS-TMS by a GUI device
to send a drone to the entrance so that the user can see what
is happening . The captured video by the drone is displayed
on a screen in a room. Figures 15 and 16 show the map
and the planned trajectory by the proposed system. Figure 17
shows the experimental results. Left images show the motion
of a drone and right images show the GUI interface. After
suggesting the destination by pointing on the GUI, the drone
took off, moved along the desired path, and reached to the
destination automatically.

VIII. CONCLUSIONS

In this paper, we have been solving path planning and
feedback control problems in an Informationally Structured
Environment based on ROS-TMS framework. The major
problems solved are a path planning using Dijkstra’s algo-
rithm and occupancy grid map, trajectory tracking problem
using dynamic model of the drone and some control theory
results. We conducted some service experiments by a drone
using a developed GUI interface. Some assumptions have
been done to design the path planning algorithm can cause
some problems in specific cases. For instance, the assumption

617

Initial

Target
Sofa

BedTable

Fig. 15. Room map and initial and target positions

of a static environment is not valid if obstacle positions
are modified or new unexpected obstacles are added to the
structure. Hence, a dynamic map of the environment, updated
each time the algorithm is executed, is of particular value and
solves this problem.

Target position

Initial position

Entrance door

Fig. 16. Planned trajectory by the developed system

ACKNOWLEDGMENTS

This research is supported by The Japan Science and
Technology Agency (JST) through its “Center of Innova-
tion Science and Technology based Radical Innovation and
Entrepreneurship Program (COI Program).”

REFERENCES

[1] Anuj Puri. A survey of unmanned aerial vehicles (uav) for traffic
surveillance. Department of computer science and engineering,
University of South Florida, 2005.

[2] Vladimir Reilly, Haroon Idrees, and Mubarak Shah. Detection and
tracking of large number of targets in wide area surveillance. In
Computer Vision–ECCV 2010, pages 186–199. Springer, 2010.

[3] Cristina Gomez and David R. Green. Small-scale airborne platforms
for oil and gas pipeline monitoring and mapping. University of
Aberdeen report, 2015.

[4] Y. Iwashita, A. Stoica, and R. Kurazume. Finding people by their
shadows: Aerial surveillance using body biometrics extracted from
ground video. In Emerging Security Technologies (EST), 2012 Third
International Conference on, pages 43–48, Sept 2012.

[5] Parth N Patel, Malav A Patel, Rahul M Faldu, and Yash R Dave.
Quadcopter for agricultural surveillance. Advance in Electronic and
Electric Engineering, 3(4):427–432, 2013.

[6] J. Berni, P.J. Zarco-Tejada, L. Suarez, and E. Fereres. Thermal and
narrowband multispectral remote sensing for vegetation monitoring
from an unmanned aerial vehicle. Geoscience and Remote Sensing,
IEEE Transactions on, 47(3):722–738, March 2009.

[7] Yoonseok Pyo, Kouhei Nakashima, Shunya Kuwahata, Ryo Kurazume,
Tokuo Tsuji, Ken’ichi Morooka, and Tsutomu Hasegawa. Service
robot system with an informationally structured environment. Robotics
and Autonomous Systems, 2015.

[8] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Ku-
mar. The grasp multiple micro-uav testbed. Robotics & Automation
Magazine, IEEE, 17(3):56–65, 2010.

Fig. 17. Experiments

[9] Lionel Heng, Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer,
and Marc Pollefeys. Autonomous obstacle avoidance and maneuvering
on a vision-guided mav using on-board processing. In Robotics and
automation (ICRA), 2011 IEEE international conference on, pages
2472–2477. IEEE, 2011.

[10] Daniel Gurdan, Jan Stumpf, Michael Achtelik, Klaus-Michael Doth,
Gerd Hirzinger, and Daniela Rus. Energy-efficient autonomous four-
rotor flying robot controlled at 1 khz. In Robotics and Automation,
2007 IEEE International Conference on, pages 361–366. IEEE, 2007.

[11] Tokuo Tsuji, Oscar Martinez Mozos, Hyunuk Chae, Yoonseok Pyo,
Kazuya Kusaka, Tsutomu Hasegawa, Ken’ichi Morooka, and Ryo
Kurazume. An informationally structured room for robotic assistance.
Sensors, pages 1–28, 2015.

[12] ardrone autonomy. http://ardrone-autonomy.readthedocs.org/en/latest/.
[13] Parrot. http://ardrone2.parrot.com/ardrone-2/specifications/.
[14] Ronald ARKIN. Behavior-Based Robotics. The MIT Press, 1998.
[15] Engel Jakob, Sturm Jürgen, and Cremers Daniel. Scale-aware naviga-

tion of a low-cost quadrocopter with a monocular camera. Robotics
and Autonomous Systems (RAS), pages 1–14, 2014.

618

