海洋破砕プラスチックごみ回収ロボットの開発

○宇野 光輝, 倉爪 亮 (九州大学)

Development of garbage collecting robot for marine microplastics

○ Mitsuki UNO, and Ryo KURAZUME (Kyushu University)

Abstract : Marine microplastic washed up on beaches is difficult to collect by hand because the grains are small, and scattered over a wide area. In this study, we are developing a robot that moves autonomously and collects microplastics. In this paper, we report on the investigation of the angle of repose, which is important for the "excavation", and on the experiment.

1. 緒言

海洋破砕プラスチックごみとは、人々が海へと捨てた ペットボトルやストロー等のプラスチック製品が、海洋を 漂う間に破砕され、砂浜等に打ち上げられた小さなごみの ことを指す.これらのごみの存在は、海洋生物が餌と勘違 いして食べてしまい、海の生態系が崩れるといった危険性 を含んでいる.現在、大型のプラスチックごみは現地住民 などによって清掃されているが、fig.1に示すように、破砕 プラスチックごみは砂と交じり合い広範囲に散在している ために、非常に処理が困難である.

Fig. 1: Marine microplastics on beach

そこで本研究では,自律移動により海洋破砕プラスチッ クごみを回収するロボットの開発を目標に,必要な機能に 関する検討を行った.

2. 先行研究

海洋汚染の解決策としてロボットを利用する提案は多 く,これまでも様々なごみ回収ロボットが先行研究とし て開発されている.例えば,回転するツメを用いた小型ク リーンロボット [1] や,ほうきとちり取りを模倣した機構 によりごみ回収を行うロボット [2] などである.また他の 方法として,以前我々は fig.2 に示すようなバキュームによ るごみ回収ロボット [3] を開発した.これは,バキューム の吸引力を用いて細かいごみを回収するものであるが,電 力効率やごみと砂の分離性能において問題があった.

Fig. 2: Vacuum robot[3]

また現状,砂浜に散らばるごみ回収において,マイクロ プラスチックなどの大きさが 5mm 程度の小さなごみに対 して効果的なごみ回収ロボットは提案されておらず,本 研究ではこの小さなごみに対して効果的な回収方法を提案 する.

3. 要求仕様

砂浜のごみを回収するのに必要な機能として,砂とごみ を「掘り出す」機能と,砂とごみを「分離」する機能が挙 げられる.この二つの機能について,マイクロプラスチッ クを回収するために効果的な機構を開発する必要がある.

本稿では、主に砂とごみを「掘り出す」機能について検 討する.これを実装するにあたり、本研究では「ツメ」に よる掘削を採用した.ロボットの前方に大きなツメを搭載 することで、Fig.3 に示すように前進するだけで砂とごみ を掘り出すことが可能となる.複雑な機構を用意する必要 がなく、かつ確実に目的が達成できる方法と考え採用した.

Fig. 3: Claw Excavation

4. ツメについての検討

掘削を行うツメの重要なパラメータとして、ツメの角度 や形状、掘削速度がある.そこで、それらパラメータの特 性を明らかにするため、本研究では「疑似安息角測定実験」 と「ツメ掘削実験」を行った.「擬似安息角測定実験」は、 ツメの上に堆積する砂に対して、重力以外の力が働かない 静的な状態でのツメの適切な角度や形状を求めるのが目的 である.また「ツメ掘削実験」は、掘削時に発生する砂山 を利用し、効率的にごみ回収が可能なツメの角度・掘削速 度を求めるのが目的である.なお、使用した砂は十分に乾 燥させたものであり、含水率はほぼ0%と考えられる.

4.1 疑似安息角測定実験

安息角とは, Fig.4 に示すような, 粒状体の堆積が形成さ れた場合にその斜面と水平面のなす角のことを指す. その 測定方法は様々で, 排出法, 注入法, 傾斜法などが存在す る [4]. 一般的な砂の安息角は約 34 度と言われているが, 実際には粒の形状や大きさにより変化することが知られて いる [5]. また参考論文 [6] によると, Fig.5 のように, 砂 を掘り出す際に発生する砂山は, その砂の安息角に依存し て形成される.

本来,安息角は水平面にできる砂山の角度を指すが,本 研究で検討している機構では,傾斜面であるツメを考慮す る必要がある.そこで本実験では,その水平面を Fig.6の ように斜面や段差に変えた上で疑似的な安息角を求める. これにより砂を掘り出すツメに対しての安息角の影響につ いて調査し,ツメの最適な角度・形状を求めることを目的 とする.

Fig. 4: Angle of Repose

Fig. 5: Formation of sand pile[6]

Fig. 6: Application of Angle of Repose

4.1.1 方法

本実験では、安息角の測定法として一般的な注入法によ り疑似的な安息角を測定する. Fig.7 と Fig.8 に本実験で 使用した安息角測定器と円錐台の 3D モデルを示す. 測定 器中心にある丸いくぼみに円錐台をはめ込み、測定器上部 にあるろうとから砂を流し込むことで円錐台の上に砂山を 形成する. Fig.9 の赤い線で示すように、形成された砂山 から疑似安息角をデジタル分度器により測定する.

Fig. 7: Pseudo-Angle of Repose Measuring Instrument

Fig. 8: Circular Truncated Cone

Fig. 9: Pseudo-Angle of Repose Measurement Experiment

測定項目は、直径 50mm の円錐台に対し、それぞれ Fig.10 に示すような、0、1、2、3 段の段差をつけたもの と、直径 100mm の円錐台に対し、0、2、4、6 段の段差を つけたものを用意した.また各円錐台は、斜面を 0~35 度 まで 5 度ずつ分けて作成した.斜面に段差を付け表面の形 状を変えることで、砂の堆積に影響があるかを調査し、ま た円錐台のスケールを変えることで、砂山の規模による振 る舞いの違いについて調査した.

Fig. 10: With or Without steps

4.1.2 結果

Fig.11 に 50mm での疑似安息角, Fig.12 に 100mm で の疑似安息角の測定結果を示す.両グラフとも縦軸が疑似 安息角,横軸が斜面の角度であり,各線は段差の違いを示 している.疑似安息角が 0 度となっている部分は,砂山が 形成されず測定不可だった部分である.直径 50mm の円 錐台の場合,疑似安息角は円錐台の段差や角度に依存せず 約 30~31 度で安定しており,斜面が 25 度以上になると砂 山が形成されなくなった.直径 100mm の円錐台の場合, 疑似安息角は円錐台の段差や角度に依存せず約 32 度で安 定しており,斜面が 30 度以上になると砂山が形成されなく なった.両方とも段差による安息角の影響はあまり無く, Fig.13 に示すように,砂山が形成されなくなった場合のみ 段差の谷に砂が堆積したが,砂山を形成するほどの影響は 無かった.

Fig. 11: 50mm results

Fig. 12: 100mm results

Fig. 13: Deposition of sand at steps

4.1.3 考察

本実験の結果を踏まえると、今回使用した砂による疑似 安息角は約 30~32 度と考えられる.ただ、直径 50mmの 円錐台では斜面の角度が 25 度以上, 100mm の円錐台では 30 度以上で砂山が形成不可となった. この原因としては、 砂山の大部分がツメに置き換わったことで、砂山を形成す るための最低限の砂が載らなくなったためと考えられる. また直径 50mm と 100mm での,砂山を形成する斜面の角 度の限界が違う点については、直径 100mm の円錐台の方 が斜面の表面積が広いことで、砂が多く載りやすくなった ためと考えられる. Fig.14 に示すように、砂山の形成は、 まず斜面に少量の砂が載り、そこをもとに徐々に砂が広が ることで成立する. つまり砂が多く載りやすいということ は、この砂山形成の現象が起きやすくなるため、50mmの 場合よりも角度が大きくなったと考えられる. また、斜面 が 25~30 度以上となると砂山の形成ができなくなること から、この斜面の角度をツメの角度として応用する場合、 20 度程度であれば最低限砂が堆積すると考えられる.ただ し、本実験では上から砂を堆積させたのみであり、実際に 砂を掘削したわけではないため、掘削時の横方向の力を考 慮すれば、より大きな角度で砂山を形成することが可能と 考えられる.

Fig. 14: Flow of sand pile formation

ツメ掘削実験 4.2

ツメにより砂を掘り進める際、そのツメの上には掘り出 した砂により砂山が形成される. Fig.15 に示すように、ツ メの後方に搭載した分離機構にごみを送るには、この砂 山の形成に伴う砂の流れによってごみが押し流される必 要がある.しかしこの砂山は、ツメの角度や掘削速度に応

じてその形を変え、流れる砂の量も変化する.よって本実 験では、ツメの角度により変化する砂山の形成に必要な砂 の量 (形成量 [cm³]), 及びごみを押し流す砂の量 (流出量 [cm³]), それに伴うごみの回収率 [%](すべてのごみに対し 何個回収したか)を計測し、マイクロプラスチックを回収 するのに適したツメの角度・掘削速度の傾向について調査 することを目的とする.ただし形成量は、形成された砂山 の側面から辺の長さを測定し面積を算出した後、ツメの横 幅の値を掛け体積を算出し計測した. また流出量は, 4.2.1 で示す回収ボックスで回収した砂の質量に使用した砂の 密度 1.7g/cm³ から体積に変換して計測し、回収率は回収 ボックスで回収したごみの数により計測した.

Fig. 15: Sand and garbage flow from excavation

4.2.1 方法

まず、本実験で使用したツメの 3D モデルを Fig.16 に 示す. 3D プリンタとポリカーボネート板によって製作し, ツメの高さは 5cm, 板の高さは 14cm, 幅は 12cm である. ツメの後部にある回収ボックスにより、流れ出た砂とごみ を回収する.またポリカーボネート板によりツメを挟むこ とで、ごみを送り出すための砂を効率的に確保することが でき、また形成された砂山の状態を確認しやすくなる.

Fig. 16: Claw

次に、自作した砂場にて行った実験の様子を Fig.17 に示 す. ツメを砂に 2~2.5cm ほど侵入させ、モータとワイヤ でレールに取り付けたツメを引くことで掘削を行った. 掘 削距離は約1mである. ツメの角度は, 20, 40, 60, 80度 の4パターン,掘削速度は5,10,15,20,25,30cm/sの 6パターンとした.

Fig. 17: Claw Excavation Experiment

また,実験で使用したごみを Fig.18 に示す. 今回は,実際に砂浜に多く散在する 2 次マイクロプラスチックに近い,大きさ 3mm ほどのプラスチック板を自作して使用した. これらを Fig.19 の赤丸に示すように,ツメの前に等間隔に 10 個配置した. 各パターンで 5 回ずつ掘削を行い,Fig.20 に示すような砂山の状態を確認し,形成量と流出量,ごみの回収率を測定した.

Fig. 18: Plastic garbage

Fig. 19: 10 pieces of plastic garbage

Fig. 20: Confirmation of the sand pile

4.2.2 結果

本実験における評価指標として,流出量/形成量と,ごみ の回収率を採用した.流出量/形成量は,流出量→大,形成 量→小となることで値が大きくなる指標である.これを採 用した理由は,同一の距離を掘削する際,砂山を形成する ために必要な砂の量が少なく,かつ流れ出る砂の量が多け れば,より効率的にごみを送り出すことが可能となり,回 収性能が高くなると考えたためである.それぞれの評価指 標について,Fig.21 に流出量/形成量,Fig.22 に回収率の グラフを示す.

Fig. 21: Ratio of outflow and formation

Fig. 22: Collection rate

Fig.21 の各グラフは縦軸が流出量/形成量,横軸が速度 であり, Fig.22 の各グラフは縦軸が回収率,横軸が速度で ある.両グラフのそれぞれの線は,それぞれ別角度でのツ メの掘削を表し,ツメの角度・速度によりその振る舞いを 変えていることが分かる.

20 度のツメでは、両グラフとも速度が上昇するにつれ てその値が増加した. 40・60 度のツメでは、ある速度に おいて値が大きく、それ以外ではあまり変わらない、もし くは値が小さいという結果になった. また 80 度のツメで は、両グラフとも速度が上昇するにつれて値が減少傾向に あった. 総じて両グラフでの傾向はほぼ一致しており、流 出量/形成量と、ごみの回収率に相関があることが分かる.

4.2.3 考察

まず,各角度での傾向についての考察を述べる.20度の ツメでは,速度の上昇に伴い流出量/形成量と回収率が共 に増加していたが,これは単純に砂が流出する勢いが増し たためだと考えられる.次に40・60度では,ある特定の 速度で各値が最大となり,他はあまり大きくないという結 果になったが,これは角度と速度に何らかの相関があるこ とを示している.一方,80度では,20度での傾向とは逆 に,速度の上昇に伴い各値が減少していたが,これは勢い の強さにより砂山が崩れたことが影響したと考えられる. ただ,各角度における流出量/形成量,回収率の最大値に 該当する速度に着目すると,20度では30cm/s,40度では 25cm/s,60度では10cm/s,80度では5cm/sをなってい る.この結果から,ツメの角度と最適な速度には負の相関 があると考えられる.

さらに、本実験では、二つの評価指標において、ツメの角 度が 40 度で速度が 25cm/s のときに最大値となった.前 述のように、各角度において最適な速度が存在すると考え られるが、最も回収率が高く現実的な速度での運用が可能 であるという点を踏まえて、角度が 40 度程度のツメを用 い、掘削速度 20~25cm/s 程度での運用を行うのが良いと 考えられる.

5. 結言

本稿では、人による回収が難しい海洋破砕プラスチック ごみを回収するロボットについて、その要求仕様として砂 とごみの「掘り出し」と「分離」を定義し、主に「掘り出 し」に関して必要な機能・傾向を調査する実験を行った. 「擬似安息角測定実験」では、静止状態での堆積する砂の 振る舞いを調査し、傾斜の形状・規模の違いに対して擬似 安息角の振る舞いが変わらないことを確認し、傾斜が約20 度であれば最低限砂が堆積することを示した.「ツメ掘削 実験」では、最初の実験を踏まえ角度 20 度のツメを最低 ラインとし、40、60、80 度とツメの角度を変化させ掘削を 行い、ツメの角度と速度について調査した. 今回は砂の含 水率がほぼ0%の状態で実験を行ったが、今後は実環境を 踏まえて含水率を変化させた場合の実験を行う必要がある と考えられる. またさらに、砂とごみの掘り出しだけでな く、それらの分離を実現する機構を開発し実験を行うこと で、マイクロプラスチックごみに対応したごみ回収ロボッ トの開発を目指す.

謝辞

本研究の一部は, JSPS 科研費 JP20H00230 の助成を受けたものである.

参考文献

- [1] 金田龍希,井上浩行,曽利仁,杉本大志:"小型ビー チクリーンロボットの試作",ロボティクス・メカトロ ニクス講演会 2021, pp.1P1 - K06(2021)
- [2] 市村智康, 中嶋新一:"自律型海浜清掃ロボット「ひろっ太郎」の開発 一砂浜におけるゴミ回収と自律 走行の評価―",自動制御連合講演会 2017, Vol.60, pp.456-458(2017)
- [3] 宇野光輝, 倉爪亮: "海洋破砕プラスチックごみ回収 機構の開発", 第 22 回システムインテグレーション部 門講演会, pp.1054-1057(2021)
- [4] 松倉公憲, 恩田裕一: "安息角-定義と測定法にまつ わる諸問題", 筑波大学水理実験センター報告, pp.27-35(1989)
- [5] Glover, T.J.: "Pocket Ref", Sequoia Publishing, (1995), (ISBN 978-1885071002)
- [6] 小松崎俊彦,佐藤秀紀,岩田佳雄,辻英樹: "CA による粒状体掘削のモデル化に関する研究", Dynamics ⁽⁶⁾ Design Conference 2003, Vol.2003, pp.508-1 – 508-5(2003)