欠損確率の再現によるLiDAR Sim2Realの検討

○宮脇 智也(九州大学) 中嶋 一斗(九州大学) Xiaowen Liu(九州大学) 岩下 友美(ジェット推進研究所) 倉爪 亮(九州大学)

LiDAR センサの点群に基づく物体検出やセグメンテーションなどの 3D シーン理解タスクでは、大量の学習 データ作成に要するアノテーションコストが課題となっている.この問題に対しては、シミュレータによって自 動的に合成したラベル付きデータを学習し、実環境に適応させる Sim2Real が注目されている.本稿では、シミュ レータの合成データに対して欠損ノイズを再現することで実環境に適応させる Sim2Real 手法を紹介する.距離 画像表現に基づく代表的なセグメンテーションタスクにおいて提案手法の有効性を示す.

1. はじめに

LiDAR センサは、レーザ光に基づく距離センサの一 種であり、周囲環境の物体の位置や形状を点群データ として計測することができる. 最も一般的な計測方式 では、複数の仰俯角・方位角に対してパルスレーザ光を 照射し、反射光を計測するまでの時間を距離に換算す る. 自律移動ロボットや自動運転車に広く利用されてお り、高精度な自己位置同定や障害物検出に不可欠であ る.特に,LiDAR センサの点群に基づく物体検出やセ グメンテーション [1, 2] は,ロボティクス・コンピュー タビジョン分野の中心的タスクとして取り組まれてき た. これらのシーン理解タスクにおける解法のほとん どは、深層学習に基づく多層ニューラルネットワークを 利用しており, SemanticKITTI [3] や nuScenes [4] に 代表される大規模ベンチマークデータセットを用いて 多くの成果が報告されている.一方で,データセット を構成する大量のラベル付き点群を作成するには、膨 大な時間とリソースを要することが課題となっている. この問題に対して、シミュレータ上でラベル付き学習 データを自動的に合成し、学習したモデルを実環境に 転用する Sim2Real が注目されている.

学習データとテストデータの分布の不一致を解消す るための手法群はドメイン適応と呼ばれ,Sim2Real も そのうちの一種である.これまでに,一般のドメイン適 応タスク同様に特徴分布を校正するアプローチ [2,5] や 実データの特徴を合成データに再現するアプローチ [1, 2,5-7] が提案されている.本稿では,特に後者に着目 し,レーザ計測に伴う実データ特有の欠損ノイズを再 現する方法について議論する.実験では,LiDAR 点群 に対して点ごとの物体クラスを推定するセマンティッ クセグメンテーションタスクを対象として,欠損ノイ ズ再現による Sim2Real の効果について報告する.

2. 欠損ノイズのモデル化

LiDAR データにおける欠損ノイズは,照射したレー ザ光が物体表面で拡散・減衰することで,反射光の検 知に必要な受光強度が十分に得られず発生する場合が 多い.照射される物体の材質や入射角によって複雑に 変化するため,物理パラメータを同定しシミュレータ 上で再現するのは難しい.これらの欠損ノイズの分布 の違いは,LiDAR データの Sim2Real において性能低 下を引き起こすことが知られており [2],欠損ノイズの 正確な復元が重要となる.本章ではまず,LiDAR デー

図 1 LiDAR 距離画像の合成データ [2] と実データ [8] (一部の方位角を切り出して表示,黒色領域が欠損)

タの距離画像表現と欠損ノイズのモデル化について述 べる.レーザの仰俯角 φ・方位角 θ をそれぞれ縦軸・横 軸とした 2D グリッドに各距離値を投影すると,各画 素に距離値 r を持つ H × W サイズの距離画像が得ら れる.欠損ノイズのモデル化に関する関連研究の多く は,この距離画像表現に基づいており,本研究もこれ に準ずる.図1に,代表的な LiDAR データセットに おける合成データと実データの距離画像の例を示す.

本稿では、関連研究 [1, 2, 5, 9] と同様に、これらの 距離値を隠蔽する乗法性二値マスク $m_i \in \{0, 1\}$ がレー ザ照射角 *i* ごとの生起確率 $p_i \in [0, 1]$ のベルヌーイ分布 $m_i \sim \text{Bernoulli}(p_i)$ に従って生じるものと仮定し、二 値マスクを欠損ノイズとして利用する場合の確率 p_i の モデル化について検討する.

例えば、Wuら [1, 2] は、距離画像の画素位置ごとの 欠損頻度を現実のデータセットから予め算出し、学習 時は欠損頻度からサンプリングした欠損ノイズを合成 データに付与する方法を提案している.しかし、この手 法は全ての合成データで同じ欠損頻度 p_iを用いるため、 データに含まれる物体ごとの特徴を表現することはで きない. また, Zhaoら [5] は, 対応のない合成データ と実データの集合を用いて、CycleGAN に基づく欠損 推定ネットワークを学習している. Manivasagam ら [7] は、 欠損マスクの推定を二値分類問題として定式化し、 欠損推定ネットワークを学習している. これらの手法 は二値分類に伴うソフトマックス出力を確率値 pi とし て, 欠損ノイズを擬似的にサンプリングしている. し かし、分類学習に基づく多層ニューラルネットワーク のソフトマックス出力確率は、多くの場合学習データ の実際の分布に則さないことが知られている [10]. 一 方, Nakashima ら [9] は, LiDAR 距離画像に対する敵 対的生成ネットワーク (GAN) の学習を通して, 距離 値と欠損確率 *p* の共起関係を学習する手法を提案して いる.

3. GAN inversion による欠損確率推定

第2章で述べた通り,学習データの頻度 [2] や二値分 類に伴うソフトマックス出力確率 [7] に基づくモデル化 では,サンプリングされる欠損ノイズと実際の欠損ノ イズの分布が乖離する可能性がある.本稿では,距離 画像表現に基づく LiDAR データの敵対的生成ネット ワーク (GAN) [9] を利用した欠損確率の再現手法を紹 介する.

3.1 LiDAR 距離画像の GAN

本研究で使用する GAN [9] は、一般的な GAN と同 様に、潜在変数 $z \sim N(0, I)$ から画像 x_z を生成する 生成器と、生成データ x_z と実データ x_{real} を識別する 識別器から構成される.一方、生成器はデータ x_z を 直接生成するのではなく、欠損なし距離画像 r_z と欠損 確率マップ p_z を分離生成する.次に、欠損確率マップ p_z に従ってサンプリングされる乗法性二値ノイズ m_z によって距離値をマスクすることで欠損あり距離画像 $x_z = m_z \odot r_z$ を表現する.本研究では、INR-GAN [11] に基づく生成器を KITTI Raw データセット [8] で学習 する.

3.2 距離画像復元に基づくシーン潜在変数の推定

学習された GAN は、潜在変数 z を探索することで 所与のデータを再構成することができ、一般に GAN inversion と呼ばれる.ここでは、前述の欠損なし距離 値出力 r_z を合成データ \hat{x} に近づけるように以下のマス ク付き相対誤差を最小化する潜在変数 $\hat{z} = \arg\min_{z} \mathcal{L}_{rec}$ を求める.

$$\mathcal{L}_{\rm rec} = \frac{\|\hat{m} \odot (1 - r_z/\hat{x})\|_1}{\|\hat{m}\|_1},\tag{1}$$

ただし, \hat{m} は合成データ \hat{x} の欠損マスク, $\|\cdot\|_1$ は L_1 ノ ルムである.本処理は Sim2Real タスクを学習する前 にオフラインで実行する.

3.3 欠損確率マップに基づくノイズサンプリング

前章の最適化によって得られる \hat{z} を用いて欠損確率 マップ $p_{\hat{z}}$ を生成し、これを合成データ \hat{x} の欠損ノイ ズ再現に利用する. 具体的には、 $p_{\hat{z}}$ を生起確率として、 データごとの欠損マスクを $m_{\hat{z}} \sim \text{Bernoulli}(p_{\hat{z}})$ によっ てサンプリングする. 本サンプリングの計算コストは低 いため、Sim2Real の対象タスクを反復学習する際にオ ンライン実行し、欠損の確率的な振る舞いを再現する.

4. 実験

本稿では、LiDAR 距離画像の画素ごとの物体クラス を推定するセマンティックセグメンテーションを対象 とし、欠損ノイズ再現による Sim2Real 効果について 報告する.

4.1 実験設定

表1に本実験で用いるデータセットを示す.対象ク ラス数に応じて、2種類の実験を設定する.1つ目は、

表 1	使用するデ・	ータセ	:ット.	†	Synl	LiDAR	[6]	と	Se -
1	manticKITT	I [12]	は共有	iす	る19	クラスの	うみ	を禾	川用.

データセット	ドメイン	クラス数	データ数
GTA-LiDAR [2] KITTI Raw [2]	Simulation Real	$2 \\ 2$	$121,087 \\ 10,848$
SynLiDAR [6] SemanticKITTI [12]	Simulation Real	19^{\dagger} 19^{\dagger}	$198,396 \\ 43,552$

水平 90°・解像度 64 × 512 の距離画像に対して車と歩 行者の 2 クラスを識別するタスクで,合成データの学 習には GTA-LiDAR データセット [2],実データの評 価には同じクラスでアノテーションされた KITTI Raw データセット [8] のサブセット [2] を用いる.2 つ目 は,水平 360°・解像度 64 × 1024 の距離画像に対して 前景・背景の 19 クラスを識別するタスクで,合成デー タの学習には SynLiDAR データセット [6],実データ の評価には SemanticKITTI データセット [6],実データ の評価には SemanticKITTI データセット [12] を用い る.セマンティックセグメンテーションを行うモデルに は, SqueezeSegV2 [2] を用いる.結果の評価には,推定 された領域と真値の領域の重畳度を示す intersectionover-union (IoU) を算出する.

4.2 比較手法

本稿では、欠損確率の再現方法について、4種類の方 法を比較する.(1) **再現なし**:欠損ノイズを重畳せずに 合成データをそのままモデルに入力する.(2) **画素共通** の頻度:実データの学習セットの全画素からスカラーの 頻度値を算出し、欠損確率とする.自動運転シミュレー タの LiDAR モデル [13] に導入されている欠損モデル に類似する.(3) **画素ごとの頻度** [2]:実データの学習 セットから画素位置ごとの頻度値を算出し、データ共 通の *H*×*W* の欠損確率マップを算出する.(4) **GAN** 推論:第3章で紹介した GAN inversion を介してデー タごとの欠損確率マップを生成する.

4.3 実験結果

表 2 に GTA-LiDAR \rightarrow KITTI Raw の実験結果, 表 4 に SynLiDAR \rightarrow SemanticKITTI の実験結果を示 す. それぞれの表には,先行研究の結果 [5, 6] および 実データで学習した場合の結果も付記している.

表2(GTA-LiDAR → KITTI Raw)では,再現なし のクラス平均 IoU が 1.7%であるのに対して,欠損ノイ ズを再現した手法はいずれも 40%を超えており,特に GAN 推論によってデータごとの欠損確率を推定した手 法が 46.3%と最も高い.さらに,複数のドメイン適応 手法を組み合わせた先行研究 ePointDA [5] や実データ で学習した場合の IoU を超えており,シミュレーショ ン合成による学習データのスケールアップと提案手法 による Sim2Real の有効性が定量的に示された.図 2 に,再現された欠損ノイズを示す.GAN 推論による欠 損ノイズは物体に応じた欠損が表現できている.

また,表3では,第3.3章で紹介したGAN推論に基 づく欠損ノイズ生成において,反復学習時に毎回サン プリングしたものを確率的ノイズ,初回のサンプリン グ結果で固定したものを確定的ノイズとし,比較する. 実験結果から,クラスごとのIoU,クラス平均のIoU

表 2 欠損確率の再現方法による比較(GTA-LiDAR [2] → KITTI Raw [8])

手法	car	edestrian	クラス平均
再現なし	1.1	2.4	1.7
画素共通の頻度	55.2	25.1	40.2
画素ごとの頻度 [2]	59.0	22.5	40.7
GAN 推論	67.3	25.2	46.3
ePointDA [5]	66.2	24.8	45.5
実データで学習	70.1	16.5	43.3

表 3 GAN 推論における確率的ノイズと確定的ノイズの 比較. P は精度, R は再現率.

		IoU (%) \uparrow	
サンプリング	car	pedestrian	クラス平均
確率的	64.2	24.2	44.2
確定的	67.3	25.2	46.3
再現なし			
画素共通の頻度			
画素ごとの頻度			
GAN 推論			

図2 再現した欠損ノイズの比較(GTA-LiDAR)

ともに確率的ノイズを用いた学習方法が優れているこ とが確認できる.このことから,欠損ノイズ再現に基 づく LiDAR Sim2Real の今後の指針の1つとして,欠 損ノイズの直接推定ではなく,欠損確率の推定とサン プリングが適していると考えられる.

一方,表4 (SynLiDAR → SemanticKITTI)では, 再現なしのクラス平均 IoU が 6.8%であるのに対して, 欠損ノイズを再現した手法はいずれも 13%超と僅かな 改善が見られた.また,表2と同様に GAN 推論を用 いた手法が最も高い平均 IoU 14.7%を示した.一方で, 実データを学習した場合の IoU とは大きく離れており, 画素ごとの頻度と GAN 推論を用いた手法の差は小さ い.考えられる要因として,第 3.2章で紹介した GAN inversion のシーン復元精度が挙げられる.例えば,図3 に示す例では,画像全体に分散する欠損ノイズの分布を 表現できているものの,車窓などの物体レベルの特徴的 な欠損が再現できていない.今後の課題として,GAN inversion におけるシーン潜在変数の推定精度を向上さ せることが挙げられる.

図3 再現した欠損ノイズの比較 (SynLiDAR)

5. まとめと今後の展望

本研究では、LiDAR 計測に伴う欠損ノイズの生起確 率を学習済み GAN によって再現することで Sim2Real を行う手法を紹介した. LiDAR 距離画像に基づくセマ ンティックセグメンテーションを対象とした 2 種類の 設定で Sim2Real 実験を行った結果,提案手法の有効 性が示された.一方,欠損ノイズの再現精度は、GAN を用いた距離画像の復元精度によって大きく左右され ており,距離画像の解像度・物体クラス数の異なる 2 種類の実験設定で,欠損ノイズ復元の効果に差が見ら れた.今後は,欠損ノイズ生成の手がかりとなる GAN の性能改善,よりロバストな GAN inversion 手法の開 発に取り組む.また,点群表現に基づくセグメンテー ションや他の LiDAR データセットを用いた Sim2Real 実験を実施し,欠損ノイズ復元の効果についてより詳 細に調査する予定である.

謝辞

本研究の一部は, JSPS 科研費 JP23K16974, JST 【ムーンショット型研究開発事業】グラント番号【JP-MJMS2032】の支援を受けたものである.

参考文献

- B. Wu, A. Wan, X. Yue, and K. Keutzer, "Squeeze-Seg: Convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D Li-DAR point cloud," in *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)*, pp. 1887–1893, 2018.
- [2] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, "SqueezeSegV2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud," in *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)*, pp. 4376–4382, 2019.
- [3] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, J. Gall, and C. Stachniss, "Towards 3D LiDAR-based semantic scene understanding of 3D point cloud sequences: The SemanticKITTI dataset," *The International Journal on Robotics Re*search (IJRR), vol. 40, no. 8-9, pp. 959–967, 2021.
- [4] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, "nuScenes: A multimodal dataset for autonomous driving," in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11621–11631, 2020.
- [5] S. Zhao, Y. Wang, B. Li, B. Wu, Y. Gao, P. Xu, T. Darrell, and K. Keutzer, "ePointDA: An end-toend simulation-to-real domain adaptation framework for LiDAR point cloud segmentation," in *Proceedings* of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3500–3509, 2021.
- [6] A. Xiao, J. Huang, D. Guan, F. Zhan, and S. Lu, "Transfer learning from synthetic to real LiDAR point cloud for semantic segmentation," in *Proceed*ings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2795–2803, 2022.
- [7] S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich, S. Tan, B. Yang, W.-C. Ma, and R. Urtasun, "LiDARsim: Realistic LiDAR simulation by leveraging the real world," in *Proceedings of*

	$\mathrm{IoU}~(\%)\uparrow$																			
手法	car	bicycle	motorcycle	truck	other-vehicle	person	bicyclist	motorcyclist	road	parking	sidewalk	other-ground	building	fence	vegetation	trunk	terrain	pole	traffic-sign	クラス平均
再現なし	2.1	0.1	0.7	0.9	1.9	1.3	4.0	0.0	3.6	1.8	24.6	0.0	32.4	4.3	31.1	8.7	5.1	5.3	1.7	6.8
画素共通の頻度	20.7	1.9	3.3	1.2	2.4	3.6	10.0	0.0	19.0	3.2	28.1	0.0	56.2	6.2	51.4	12.9	20.3	14.0	4.8	13.6
画素ごとの頻度 [2]	24.8	1.8	6.8	1.2	3.6	2.9	13.3	0.0	31.1	2.0	29.8	0.0	53.1	4.8	49.3	14.8	19.5	11.4	4.4	14.4
GAN 推論	30.2	1.9	7.8	1.0	3.1	3.1	15.0	0.2	42.0	3.0	32.0	0.0	56.0	4.4	50.4	14.2	17.5	10.5	3.2	14.7
PCT [6]	56.0	7.0	17.1	2.8	9.9	23.7	43.7	5.6	55.3	0.8	22.9	0.0	50.1	8.4	65.3	23.1	43.5	28.8	7.5	24.8
実データで学習	88.0	0.0	12.8	22.4	15.0	2.6	12.4	0.0	92.8	36.9	77.5	0.2	80.6	35.7	77.2	28.2	69.5	20.0	0.7	35.4

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11167–11176, 2020.

- [8] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The KITTI dataset," *The International Journal of Robotics Research (IJRR)*, vol. 32, no. 11, pp. 1231–1237, 2013.
- [9] K. Nakashima and R. Kurazume, "Learning to drop points for LiDAR scan synthesis," in *Proceedings of the IEEE/RSJ International Conference on Intelli*gent Robots and Systems (IROS), pp. 222–229, 2021.
- [10] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, "On calibration of modern neural networks," in *Proceedings of the International Conference on Machine Learning (ICML)*, pp. 1321–1330, 2017.
- [11] I. Skorokhodov, S. Ignatyev, and M. Elhoseiny, "Adversarial generation of continuous images," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10753– 10764, 2021.
- [12] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall, "SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences," in *Proceedings of the IEEE/CVF International Conference on Computer* Vision (ICCV), 2019.
- [13] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, "CARLA: An open urban driving simulator," in *Proceedings of the Annual Conference on Robot Learning (CoRL)*, pp. 1–16, 2017.