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Abstract— This paper proposes a novel method for stable
grasping and attitude regulation of an object using a multi-
fingered hand-arm system. The proposed method is based on
a simple sensory-feedback control using the information of an
object attitude, and any mathematically complicated computa-
tion, such as calculation of inverse dynamics and kinematics,
are not required. In addition, the stability of the overall system
applied this method is verified. Firstly, nonholonomic rolling
constraints between a multi-fingered hand-arm system and
an object are formulated. Then, a novel control method for
stable grasping and attitude regulation of the grasped object
is proposed. It is assumed that information of the attitude of
the object is available in real time by external sensors, such as
vision, force, tactile sensors, and so on. Next, the stability of the
overall system is verified by analyzing the closed-loop dynamics.
Finally, it is demonstrated through numerical simulations that
our proposed method enables to grasp the object with arbitrary
shape, and regulate the attitude of the object stably.

I. INTRODUCTION

A multi-fingered hand-arm system has been expected to
accomplish a dexterous grasping like a human hand. Robots
with this system will be able to perform various manipulation
tasks even in an unknown environment in stable. Aiming
at this target, many robotic systems and control methods
for grasping and manipulation of an object have been pro-
posed [1–5]. Especially, several methods for grasping and
manipulation using rolling constraints have been reported
[6–9]. However, most of these methods are based on inverse
kinematics and dynamics calculations, and require detailed
object information such as a mass and a shape of an object
in advance. In contrast, Arimoto et al. proposed a dynamic
object grasping method [10–13] which requires neither any
object information nor inverse dynamics and kinematics
calculations. Furthermore, the stability of the overall system
is verified theoretically. However, this method has just treated
stable grasping, and the manipulation of the grasped object
has not been considered.

In our previous work, we have proposed a dynamic stable
grasping method for an arbitrary polyhedral shaped object
[14]. In addition to this method, this paper proposes a
novel object manipulation method to regulate the attitude of
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Fig. 1. Multi-fingered hand-arm system

the grasped object using a multi-fingered hand-arm system
with soft hemispherical fingertips. This method accomplishes
a desired attitude control of the object using the object
attitude information from some external sensors. No other
information of the object grasped such as the mass and the
shape of the object, and inverse kinematics and dynamics
calculations are required in the proposed method. Firstly,
we formulate a nonholonomic constraint between the multi-
fingered hand-arm system and the object surface which is
constrained by rolling and area contact with each fingertip.
Arimoto et al. [10–13] has proposed a proper expression of
the nonholonomic constraint for rolling contact which can
take a dynamic equation of motion into account. However,
this method is restricted for the case that an object has two
flat and parallel surfaces. We expand the constraint for an
arbitrary polyhedral shaped object and an arbitrary number of
fingers. Secondly, we derive Lagrange’s equation of motion
for the overall system, and propose a new control signal.
Finally, it is verified that the proposed method enables to
regulate the attitude control of the object through numerical
simulations.
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II. A MULTI FINGERED HAND ARM SYSTEM

In this section, we define a model of a hand-arm system
composed of an arm and a multi-fingered hand. An example
of the multi-fingered hand-arm system treated here is illus-
trated in Fig. 1. This system has an arbitrary number of d.o.f.s
which is enough to grasp and regulate the object attitude.
Assume that all fingertips maintain rolling and area contact
with the object surfaces, and do not slip and detach from the
surfaces during manipulation. In addition, the fingertips roll
within the ranges of hemisphere surfaces, and they do not
deviate from each contact surface. Note that the gravity effect
is ignored in this paper in order to have a physical insight into
analyzing physical interaction and stability of the system. As
shown in Fig. 1, the symbol O denotes the origin of Cartesian
coordinates, and x0i ∈ R

3 is the center of each contact area.
Hereafter, the subscript of i refers to the ith finger in all
equations. The number of d.o.f.s of the arm and the ith finger
are Na and Ni, respectively. The joint angle of the arm is
expressed by qa ∈ R

Na . Similarly, each joint angle of the ith
finger is expressed by q0i ∈ R

Ni . q denotes the joint angles
of the arm and all the fingers

(
= (qa, q01, q02, ..., q0N )

T
)

.

N is the number of the fingers. As shown in Fig. 2, xi ∈ R
3

is the center of the contact area, and the symbol Oc.m.

denotes the center of the object mass and the origin of local
coordinates. Its position in Cartesian coordinates is expressed
as x = (x, y, z)

T ∈ R
3. Instantaneous rotational axis of

the object at Oc.m. in Cartesian coordinates is expressed by
ω = (ωx, ωy, ωz)

T ∈ R
3.

A. Rolling constraints

The attitude of the object in Cartesian coordinates can be
expressed by the rotational matrix R such that

R = (rX , rY , rZ) ∈ SO (3) , (1)

where rX , rY , rZ ∈ R
3 are mutually orthonormal vectors

on the object frame. It is known that this rotational matrix
is one of the members of the group SO(3). In addition to
this, we define contact frames at the center of each contact
area as follows:

R·RCi = (CiX ,CiY ,CiZ) , (2)

where RCi is the rotational matrix between the object frame
to the contact frames, and CiY is a unit vector normal to
the contact surface.

Now, the rolling constraints are expressed such that the
velocity of the center of the contact area on the fingertip,
should equal to the velocity of the center of the contact area
on the object surface. They are given as follows:[

CT
iX

CT
iZ

]
vi =

[
Ẋi

Żi

]
, (3)

where

vi = Δri

(
ĊiY − ωi ×CiY

)
(4)

Xi = −C�
iX(x− x0i) (5)

Zi = −C�
iZ(x− x0i). (6)
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Fig. 2. Contact model between a fingertip and an object surface at the
center of a contact area

vi is on the tangential plane at the center of the contact area
(now, they are surfaces of the object). ωi ∈ R

3 is the attitude
angular velocity vector for each robotic finger on the contact
frames, ri is the radius of each fingertip, and Δri is the
perpendicular distance between the center of the fingertips
and the contact surfaces (see Fig. 2). Equation (3) denotes
nonholonomic rolling constraints on the object surfaces. This
constraint is linear with respect to each velocity vector, and
thereby it can be expressed as Pfaffian constraints in the
following form:[

Xiq

Ziq

]
q̇ +

[
Xix

Zix

]
ẋ+

[
Xiω

Ziω

]
ω = 0, (7)

where⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xiq = ΔriC
T
iZJΩi −CT

iXJ0i

Xix = CT
iX

Xiω = {CiX × (x− x0i)}T −ΔriC
T
iZ

Ziq = −ΔriC
T
iXJΩi −CT

iZJ0i

Zix = CT
iZ

Ziω = {CiZ × (x− x0i)}T +ΔriC
T
iX ,

(8)

and JΩi
∈ R

3×(Na+
∑N

i=1 Ni) is the Jacobian matrix for
the attitude angular velocities of the fingertips with respect
to the joint angular velocity q̇ ∈ R

Na+
∑N

i=1 Ni . J0i ∈
R

3×(Na+
∑N

i=1 Ni) is the Jacobian matrix for the center of
the fingertip x0i with respect to the joint angle, respectively.

B. Contact Model of Soft Finger-Tip

In this paper, the physical relationship between the de-
formation of the fingertip at the center of the contact area



and its reproducing force is given on the basis of lumped-
parameterized model proposed by Arimoto et al [10]. The
reproducing force f (Δr) in the normal direction to the
object surface at the center of the contact area is given as
follows:

[
fi = f̄i + ξi

d
dt (ri −Δri)

f̄i = k(ri −Δri)
2,

(9)

where k is a positive stiffness constant of the material of
the fingertip. In the second term of the right-hand side
of the upper equation of (9), ξi (Δri) is a positive scalar
function with respect to Δri. It indicates that the viscous
force increases according to the expansion of the contact
area.

Additionally, there are viscosities between fingertips and
object surfaces in twist direction [15]. The energy dissipation
function derived from the viscosities is expressed as follows:

Tωi =
bi
2
||CT

iY (ω − ωi) ||2, (10)

where bi is the coefficient of viscosity which depends on
property of fingertips and the expansion of the contact area.

C. Overall Dynamics

The total kinetic energy for the overall system can be
described as follows:

K =
1

2
q̇THq̇ +

1

2
ẋTMẋ+

1

2
ωTIω, (11)

where H ∈ R
(Na+

∑N
i=1 Ni)×(Na+

∑N
i=1 Ni) is the inertia

matrix for the arm and the fingers, M = diag (m,m,m)
is the mass of the object, I = RĪRT, and Ī ∈ R

3×3 is the
inertia tensor for the object represented by the principal axes
of inertia.

On the other hand, the total potential energy for the overall
system is given as follows:

P =

N∑
i=1

P (Δri) =

N∑
i=1

∫ ri−Δri

0

f̄i (Δri) dζ, (12)

where P (Δri) is the elastic potential energy for each finger
generated by the deformation of the fingertip. Lagrange’s
equation of motion is expressed by applying the variational
principle as follows:

For the multi-fingered hand-arm system:

H (q) q̈ +

{
1

2
Ḣ (q) + S (q, q̇)

}
q̇ +

N∑
i=1

∂Ti

∂q̇

T

+

N∑
i=1

(
JT

0iCiY fi +XT
iqλiX +ZT

iqλiZ

)
= u, (13)

x01
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xd
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Fingertip

Fig. 3. Each center of fingertip approaches a centroid of a polyhedron
made of them

For the object:

Mẍ +

N∑
i=1

(
−fiCiY +XT

ixλiX +ZT
ixλiZ

)
= 0(14)

Iω̇ + ω × Iω +

N∑
i=1

∂Ti

∂ω

T

−
N∑
i=1

{CiY × (x− x0i)}fi

+

N∑
i=1

(
XT

iωλiX +ZT
iωλiZ

)
= 0, (15)

where S (q, q̇) is skew-symmetric matrix, u is a vector of
the input torque. In addition, λiX and λiZ denote Lagrange’s
multipliers.

III. CONTROL INPUT

We propose a new attitude control method of an object
for a multi fingered hand-arm system. This control signal
is composed of two independent parts. One part performs
stable grasping and the other part controls the attitude of the
object. The control signal for stable grasping us is designed
so that the center of each fingertip approaches a centroid of
a polyhedron made of them [14] (see Fig. 3), and given as
follows:

us =
fd∑N
i=1 ri

N∑
j=1

JT
0j(xd − x0j)−Cq̇ (16)

xd =
1

N

N∑
i=1

x0i, (17)

where C ∈ R
(Na+

∑N
i=1 Ni)×(Na+

∑N
i=1 Ni) > 0 is a positive

definite diagonal matrix that expresses the damping gain for
each finger, and fd is the nominal desired grasping force.

Secondly, we show the simple and novel control signal
for the attitude control of the object uo. The desired attitude
of the object is expressed by the rotational matrix Rd =
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Fig. 4. rx × rxd is an error vector between a desired state and a present
state with respect to the object attitude and those about y and z axes can
be generated in the similar way

(rxd, ryd, rzd). The control signal for regulating the attitude
of the object uo is given as follows:

uo = Ko

N∑
j=1

JT
Ωj {(rx × rxd)

+ (ry × ryd) + (rz × rzd)} , (18)

where Ko > 0 is a positive scalar constant. rx × rxd is an
error vector between a desired state and a present state with
respect to the object attitude. Namely, this error vector is
zero if the object attitude coincides with the desired attitude.
Eventually, the total control signal u is given as follows:

u = us + uo (19)

IV. CLOSED-LOOP DYNAMICS

In this section, we show the closed-loop dynamics of the
overall system. It is given from the Lagrange’s equation of
motion and the control signal as follows:
For the multi-fingered hand-arm system:

Hq̈ +

{
1

2
Ḣ + S +C

}
q̇ +

N∑
i=1

JT
0iCiY Δfi

+

N∑
i=1

XT
iqΔλiX +

N∑
i=1

ZT
iqΔλiZ +

N∑
i=1

∂T

∂q̇

T

+

N∑
i=1

AJT
Ωi (xi − x0i)× (xd − x0i)

+
N∑
i=1

KoC
T
iY BJT

ΩiCiY

+

N∑
i=1

{
− Ko

Δri
JT

0i (B ×CiY )

}
= 0, (20)

For the object:

Mẍ+

N∑
i=1

(
−ΔfiCiY +XT

ixΔλiX +ZT
ixΔλiZ

)

−
N∑
i=1

{
A (xd − x0i)− Ko

Δri
(B ×CiY )

}
= 0 (21)

Iω̇+ω × Iω −
N∑
i=1

{CiY × (x− x0i)}Δfi

+

N∑
i=1

(
XT

iωΔλiX +ZT
iωΔλiZ

)
+

N∑
i=1

∂T

∂ω

T

+

N∑
i=1

(x− xi)×
{
A (xd − x0i)− Ko

Δri
(B ×CiY )

}
=0, (22)

where⎡
⎢⎢⎢⎢⎢⎣

A = fd∑N
j=1 Δrj

B = (rxd × rx) + (ryd × ry) + (rzd × rz)

Δfi = fi −ACT
iY (xd − x0i)

ΔλiX = λiX +ACT
iX (xd − x0i) +

Ko

Δri
CT

iZB

ΔλiX = λiZ +ACT
iZ (xd − x0i)− Ko

Δri
CT

iXB

(23)

Now, an output vector of the overall system is given as
follows:

Λ̇ =
(
q̇T, ẋT,ωT

)T
. (24)

By taking a sum of the inner product of (24) and the closed
loop dynamics expressed by (20), (21) and (22), we obtain

d

dt
E= −q̇TCq̇ −

N∑
i=1

(
Ti + ξΔṙ2i

)−D ≤ 0 (25)

E= K + V +ΔP ≥ 0 (26)

K=
1

2
q̇THq̇ +

1

2
ẋTMẋ+

1

2
ωTIω (27)

V = Vs + Vo (28)

Vs=
A

2

{
(x01 − x02)

2
+ (x02 − x03)

2

+... +(x0N − x01)
2
}

(29)

Vo=
NKo

2

{
(rx − rxd)

2
+ (ry − ryd)

2

+(rz − rzd)
2
}

(30)

ΔP =
N∑
i=1

∫ δri

0

{
f̄i (Δrdi + φ)− f̄i (Δrdi)

}
dφ, (31)

where

δri = Δrdi −Δri (32)

D =
N∑
i=1

Ko

Δri

{
(x− x0i)

T
(
RRT

d −RdR
T
)
ĊiY

+ (ẋ− ẋ0i)
T
(
RRT

d −RdR
T
)
CiY

}
. (33)



In (32), Δrdi is Δri when fi equals to fd. V plays a role of
an artificial potential energy arisen from the control input. In
(25), all the terms except D are semi-negative. The term of
D can be ensured the boundedness by considering ||R|| =
||Rd|| = 1 and the boundedness of d

dt

{
(x− x0i)

T
CiY

}
.

Therefore, the damping gain C is configured to make Ė ≤ 0.
In addition, (26) can be satisfied because K, V and ΔP are
positive as far as 0 ≤ Δrdi − δri < ri. Eventually, (25) and
(26) yield

∫ ∞

0

(
q̇TCq̇ +

N∑
i=1

ξΔṙ2i

)
dt

≤ E (0)− E (t) ≤ E (0) , (34)

Equation (34) shows that the joint angular velocity q̇ (t) is
squared integrable over time t ∈ [0,∞). It shows that q̇(t) ∈
L2(0,∞). Considering the constraints shown by (4) and (5),
it is clear that ẋ ∈ L2(0,∞) and ω ∈ L2(0,∞). Thereby,
the output of the overall system Λ̇(t) is uniformly continuous
and it is shown that Λ̇ → 0 and Λ̈ → 0 when t → ∞ [11].
Therefore, it is obvious that the sum of the nominal external
forces applied to the hand-arm system and the object Δλ∞
is converged to zero. Namely,

Δλ∞ = (Δλq,Δλx,Δλω) → 0, (35)

where

Δλq =
N∑
i=1

(
JT

0iCiY Δfi +XT
iqΔλiX +ZT

iqΔλiZ

)

+

N∑
i=1

AJT
Ωi (xi − x0i)× (xd − x0i)

+

N∑
i=1

{
KoC

T
iY BJT

ΩiCiY − Ko

Δri
JT

0i(B ×CiY )

}
(36)

Δλx=

N∑
i=1

(
−ΔfiCiY +XT

ixΔλiX +ZT
ixΔλiZ

)

−
N∑
i=1

{
A (xd − x0i)− Ko

Δri
(B ×CiY )

}
(37)

Δλω =−
N∑
i=1

{CiY × (x− x0i)}Δfi

+

N∑
i=1

(
XT

iωΔλiX +ZT
iωΔλiZ

)

+

N∑
i=1

(x− xi)×
{
A(xd−x0i)− Ko

Δri
(B×CiY)

}
,(38)

and Δλq denotes an external force applied to each joint of
the hand-arm system, and Δλx and Δλω are also external
forces applied to the object.

As a consequence, it is shown the desired attitude of the
object is realized stably, because each nominal external force
and velocity becomes zero.

TABLE I

PHYSICAL PARAMETERS

Triple-fingered hand-arm system
1st link length la1 1.300[m]
2nd link length la2 1.000[m]
3rd link length la3 0.175[m]
1st link length li1 0.300[m]
2nd link length li2 0.200[m]
3rd link length li3 0.140[m]
1st mass center lga1 0.650[m]
2nd mass center lga2 0.500[m]
3rd mass center lga3 0.0875[m]
1st mass center lgi1 0.150[m]
2nd mass center lgi2 0.100[m]
3rd mass center lgi3 0.070[m]
1st mass ma1 1.300[kg]
2nd mass ma2 1.000[kg]
3rd mass ma3 0.400[kg]
1st mass mi1 0.250[m]
2nd mass mi2 0.150[m]
3rd mass mi3 0.100[m]
1st Inertia Ia1 diag(7.453, 7.453, 0.260)×10−1[kg·m2]
2nd Inertia Ia2 diag(3.397, 3.397, 0.128)×10−1[kg·m2]
3rd Inertia Ia3 diag(0.291, 0.291, 0.500)×10−1[kg·m2]
1st Inertia Ii1 diag(7.725, 7.725, 0.450)×10−3[kg·m2]
2nd Inertia Ii2 diag(2.060, 2.060, 0.120)×10−3[kg·m2]
3rd Inertia Ii3 diag(0.538, 0.538, 0.031)×10−3[kg·m2]
Radius of fingertip ri 0.070[m]
Stiffness coefficient ki 1.000×105[N/m2]
Damping function ξi 1.000× (

r2i −Δr2i
)
π[Ns/m2]

Object
Mass m 0.037[kg]

Y1 0.092[m]
Y2 0.048[m]
Y3 0.048[m]
θt1 1.833[rad]
θt2 1.833[rad]
θt3 2.618[rad]

Inertia I diag (1.273, 0.193, 1.148)× 10−3[kg ·m2]

TABLE II

DESIRED GRASPING FORCE AND GAINS

fd 10.0[N]
Ca diag(1.673, 1.085, 1.225, 0.463, 0.295)×10−1[Ns·m/rad]
C1 diag(1.010, 1.095, 1.310, 0.535, 0.165)×10−2[Ns·m/rad]
C2 diag(0.780, 1.300, 0.530, 0.165)×10−2[Ns·m/rad]
C3 diag(1.065, 1.300, 0.530, 0.165)×10−2[Ns·m/rad]
Ko 0.24

V. NUMERICAL SIMULATION

In this section, we report an example of these simulations.
The robot used in this simulation is a triple-fingered hand-
arm system. It consists of an arm part which has 5 d.o.f.s
and a triple-fingered part which has one 5 d.o.f.s finger and
two 4 d.o.f.s fingers. The grasped object is triangular prism,
and the cross-section view of the object is shown in Fig. 5.
Yi is the distance from the center of the object mass Oc.m.

to the surface, and θti is the external angle of the polygon
parallel to the bottom of the object. The parameters of the
triple-fingered hand-arm system and the object are shown
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in Table I. Table II shows the desired nominal grasping
force and gains. Figure 6 shows the transient responses of
object frame and its desired frame, and we can see that
the object frame R = (rx, ry, rz) converges to the desired
frame Rd = (rxd, ryd, rzd). Figures 7 and 8 show the
elements of Δλ∞ converges to zero. It is shown that the
sum of the nominal external forces applied to the system
and the object converges to zero. Figures 9 and 10 show the
transient responses of q̇, ẋ and ω. We can confirm that the
velocities of the overall system converge to zero. The results
illustrate that the dynamic force/torque equibilium condition
for immobilization of the object is realized with satisfying
the desired attitude.

VI. CONCLUSION

This paper presented the novel object attitude control
method for an arbitrary polyhedral object by a multi-fingered
hand-arm system. Firstly, the nonholonomic constraints of
rolling and area contact were formulated, and proposed two
control signals for stable grasping and attitude control. Next,
the stability of the overall system with proposed method was
verified by analyzing the closed-loop dynamics. Finally, it
is verified that the proposed method realizes object attitude
control stably through the numerical simulation result.

In the future works, we will conduct mechanical exper-
iments to verify the usefulness of our proposed method.
Furthermore, we will expand the proposed control scheme
for an object with arbitrary smooth curved surfaces.
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Fig. 7. Transient responses of Δλq
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Fig. 9. Transient responses of angular velocity of the hand-arm system
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Fig. 10. Transient responses of translational and rotational velocities of
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