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Abstract— This paper introduces an information presentation
strategy for pedestrians, aiming to enhance traffic efficiency in
a mixed pedestrian-automated vehicle environment, such as a
public road. While automated driving technology has made
remarkable progress, interactions with pedestrians on regular
roads have mostly been studied in virtual environments using
virtual reality goggles. According to these studies, potential
traffic efficiency and safety issues arise from pedestrians’
limited understanding of automated vehicle behavior. To ad-
dress this, we propose a human-machine interface employing
a head-mounted display (HMD) to mitigate traffic efficiency
degradation caused by pedestrians. The proposed system draws
upon behavioral economics principles to encourage pedestrians
to modify their behavior and develop better interactions with
automated vehicles. Simulations were conducted to identify
an information presentation strategy that strongly supports
learning, and its effectiveness was further validated through
experiments involving a real vehicle. Notably, the experimental
results confirmed that the information presentation strategies
proven effective in simulations also facilitated pedestrian learn-
ing during real-world interactions.

I. INTRODUCTION

Interacting with pedestrians is crucial for Automated
Vehicles (AVs) when navigating public roads, except for
automobile-only roads. Typically, when an AV detects a
pedestrian in its path, it will try to slow down and stop
to ensure the pedestrian’s safety. However, the behavior
of pedestrians with a limited understanding of AVs during
this protection process can potentially compromise traffic
efficiency and safety[1]. Previous research on pedestrian-
AV interactions has primarily taken place in virtual envi-
ronments, utilizing a human-machine interface (HMI) called
e-HMI attached to the vehicle. This approach has shown
promising results, enhancing pedestrian trust in the AV
and improving traffic efficiency[1][2]. Nevertheless, many of
these studies have not thoroughly explored whether e-HMI
actually facilitates pedestrian learning of AV behavior.

This study introduces an HMI system designed to aid
pedestrians in comprehending the behavior of AVs and
encourage them to adopt behaviors that enhance benefits for
both vehicles and pedestrians. By facilitating pedestrians’
understanding of AV behavior, the system aims to enhance
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traffic efficiency and reduce operational costs of e-HMI
systems for vehicles. This study investigates the use of a
behavioral economics framework to influence pedestrians’
behavior positively, particularly in an open field setting
where interactions between pedestrians and AVs take place.

The study presents the outcomes of a behavior change
promotion system rooted in behavioral economics, enabling
pedestrians to learn behaviors that optimize advantages for
both vehicles and pedestrians.

II. RELATED WORK

According to [3], in critical traffic situations, such as road
crossings, pedestrians decide whether to cross based on the
speed and proximity of approaching vehicles. This holds true
even when the vehicle has an external information display.
However, in [4], an interview-style study conducted at an
actual traffic scene, pedestrians mentioned that eye contact
with the driver also influenced their crossing decisions.

Unlike interactions with human-driven vehicles, achieving
eye contact may be challenging in interactions with AVs.
Therefore, information presentation interfaces have been
suggested to aid pedestrian-AV interactions.

According to [5], many studies have investigated visual
and auditory HMI. And these proposed ideas have been
mainly categorized by the physical triggers proposed in [6].
In this study, we attempted to design an HMI more based on
pedestrian behavior change principles by further classifying
them as psychological triggers.

In the case of [1], the focus is on a scenario where a
pedestrian crosses an intersection simultaneously with an
AV entering an intersection without a traffic signal. In this
situation, visual and audio information presentation from
the vehicle side enhanced the pedestrian’s receptivity to
the AV, both before and after exposure to the information
presentation. Similarly, in [2][7], the authors share the out-
comes of an experiment in which the vehicle was equipped
with an information presentation interface using a display,
while pedestrians were crossing an intersection without a
traffic signal. The experimental results demonstrated that
the information presentation significantly reduced the pedes-
trian’s crossing decision time. Moreover, [2] reported an
improvement in pedestrians’ acceptance of AVs, similar to
the findings in [1].

In [8], an attempt is made to convey information on
pedestrians’ recognition status by AVs using an eye-like
device attached to the vehicle. This resulted in a reduction in
the failure rate of pedestrian crossing decisions. Furthermore,
[9] suggested that expressing ”anger,” ”fear,” ”happiness,”



and ”sadness” by eye-like interface can elicit empathy and
increase agreement by pedestrians. This result suggests that
emotional expression by HMIs may contribute to improving
the benefits for both pedestrians and AVs. However, these
studies[2][7][8][9] did not investigate how crossing decision
time or safety changed after the experience of information
presentation by the interface. Therefore, it is not possible
to discuss whether pedestrians learned the behavior of the
vehicles from these data alone.

Moreover, experiments conducted in virtual environments
may not fully capture the same level of attentiveness from
subjects as in real environments due to the absence of real
danger [2]. To address these concerns, this study conducted
experiments using actual AV to verify the effectiveness of
the proposed HMI in real traffic situations.

III. BASIC CONCEPT OF THE PROPOSED HMI

This study introduces a system that provides information
to pedestrians and helps them learn how to interact with
AVs. The primary goal of the proposed system is to present
information to pedestrians in a way that enables them to
effectively interact with AVs when crossing the street, even
without the information presentation. This chapter explains
the interface hardware and the core concepts of behavioral
economics that underpin the proposed information presenta-
tion.

A. Hardware

In this study, a head-mounted mixed reality device
(Hololens2, Microsoft) was employed to provide information
to pedestrians. Utilizing augmented reality (AR) technology,
this device can overlay a virtual space onto the real world,
allowing information to be presented without significant
alterations to the environment, such as the need for a physical
display installation.

B. Behavioral Economics

Our research focuses on pedestrian learning. Therefore,
it is essential to modify the behavior of pedestrians who
are unfamiliar with or have a limited understanding of the
interaction. To achieve this goal, we proposed informa-
tion–presenting ideas to create a synergistic effect that can
bring about behavioral changes .

The triggers that induce behavioral changes are defined
in the field of Shikakeology[6], a branch of behavioral
economics. These behavior change triggers, as proposed in
Shikakeology, are illustrated in Fig. 1. They are broadly
categorized into ”physical triggers” and ”psychological trig-
gers”. We assume that when these two types of triggers
are combined, they produce a synergistic effect that can
effectively modify a person’s behavior. As mentioned in the
introduction section, by utilizing the idea generation frame-
work proposed in Shikakeology to promote behavior change,
we believed that we could devise an effective method of
presenting information to assist pedestrians in their learning
process.
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Fig. 1. Shikake triggers proposed in the Shikakeology[6].

IV. INFORMATION PRESENTATION PROTOTYPE

In this study, we developed five behavior change ideas
based on behavioral economics, as depicted in Fig. 2, along
with the corresponding Shikake triggers..

Due to hardware limitations, we utilized only Visual and
Perceived affordance as physical triggers in this study. Now,
we will elaborate on the psychological triggers that were
combined with these physical triggers and their intentions.
First, in Idea 1, we combined Visual and Social Norm. Given
that pedestrians face difficulties in communicating with AVs,
such as through eye contact, we deemed it crucial for them
to learn about the intentions and efficiency of the vehicle.
To address this, we employed emotional icons as a commu-
nication medium. The utility of the AV is expressed through
”happy” and ”sad” values, indicating efficiency based on
whether the AV can reach a pre-defined target arrival time.
Our intention is to stimulate communication between the AV
and pedestrians, leading to changes in social behavior, such
as ”giving way to a vehicle.”

In Idea 2, we combine Visual and Being watched triggers
to promote communication between vehicles and pedestrians
using a virtual eye. The virtual eye is indicated when the
vehicle is within a certain range from pedestrians, signifying
that the AV is aware of their presence. This idea, like Idea
1, aims to facilitate communication between vehicles and
pedestrians. However, it differs from Idea 1 in two aspects:
first, it intends to deter selfish pedestrian behavior by evoking
the sense of being watched; second, it does not display the
AV’s efficiency to the pedestrian. These features allow us
to respect the pedestrian’s intentions and make the crossing
itself more challenging compared to Idea 1, thus enabling
appropriate adjustments to the learning difficulty.

In Idea 3, we combine Visual and Negative expectation
triggers. This method indicates the approaching AV’s di-
rection using an arrow when it is within a certain range
from pedestrians. We anticipate that this will implicitly give
the driver an approximate distance to the AV and that the
approach warning from the indicator will effectively restrain
the driver’s behavior.

In Idea 4, we combine Perceived affordance and Negative
expectation triggers. Idea 4 utilizes perceived affordance
dynamically by displaying an arrow resembling a pedestrian
crossing. It is expected that pedestrians will recognize that



the system is presenting a crossing timing that does not
collide with the AV. The indication of crossing timing
is determined by an algorithm that calculates whether a
pedestrian and AV will coincide at the vehicle’s entry time
based on the pedestrian’s walking speed. If no collision is
projected, a green arrow appears on the street, creating an
easy problem setup to encourage pedestrians to proceed with
the crossing task.

In Idea 5, we combine Visual and Negative expectation
triggers. The concept involves displaying the level of danger
at various locations on the road based on the AV’s speed.
The danger level is calculated from the AV’s braking dis-
tance, and points within the AV’s braking distance range are
highlighted in red. Additionally, the AV’s planned route is
presented in yellow to indicate its intended direction. We
believe that this information will provide pedestrians with
more comprehensive safety details about the road, motivating
them to optimize their behavior accordingly.

Fig. 2. Behavior change ideas.

V. FORMULATION OF INTERACTION EVALUATION VALUES

Since the objective of this study is to aid pedestrians
in learning to interact with AV, it was essential to have
an objective measure for evaluating the interaction. In this
study, the interaction evaluation value, denoted as F -value,
was defined as shown in Formula (1). Here, Vp represents
the pedestrian’s travel time when no vehicle is present and
no interaction occurs, Vv is the AV’s travel time when no
pedestrian is present and no interaction occurs, Tp stands for
the pedestrian’s travel time when the AV is present, and Tv

corresponds to the AV’s travel time when the pedestrian is
present. The calculation of Vp involved measuring the walk-
ing speed of each subject. Additionally, Vt was obtained by
measuring the travel time again under the same experimental
conditions in an environment where pedestrians were not
present.

F =
Vp

Tp
+

Vv

Tv
(1)

In both the preliminary experiment and the actual experiment
using the actual device, a two-stage experiment consisting
of a ”learning process” and a ”test process” was conducted
to measure the subject’s learning effect. In the ”learning
process,” subjects used the HMI for a certain period to
learn optimal interaction with the AV. Subsequently, a ”test
process” was conducted where subjects attempted to interact
with the AVs on their own without using the HMI, to assess
whether they had indeed learned the interaction. For both
the preliminary and actual experiments, the learning process
consisted of 10 trials, while the test process had 5 trials.
The predicted learning effect of the subjects in advance
(hypothesis) is illustrated in Fig. 3.

Fig. 3. Subject’s learning hypothesis.

VI. PRELIMINARY EXPERIMENT

As the ultimate goal of this study, we planned to conduct
an open-field experiment (real scene experiment) using an
actual AV. To ensure the experiment’s practicality, we first
conducted a preliminary experiment to further narrow down
the five behavior change ideas shown in Fig. 2, which were
implemented using an virtual AV in the preliminary phase.
In this preliminary experiment, we created a virtual space
simulating a real road on Hololens2. The configuration of the
virtual space used in the pre-experiment is depicted in Fig. 4.
We then evaluated the impact of these behavior change ideas
in this virtual space and selected the ones that we expected
to be effective in inducing behavior change when using the
actual device.

Fig. 4. Virtual environment constructed during the preliminary experiment
(interaction between a subject crossing a T-intersection (green arrow) and
an AV attempting to make a left turn (red arrow)).

A. Scenario

The preliminary experiment took place in the scenario
depicted in Fig. 4, where a pedestrian (subject) crossed an
intersection without a traffic light while an AV attempted



to make a left turn into the same intersection. The subjects
were given two instructions: first, that ”the AV is in a
hurry,” and second, that ”You should complete the crossing
as quickly as possible within the range of not running.” To
ensure the subjects’ learning of interactions, we recognized
the importance of introducing randomness in the interactions
they experienced. As a result, the speed of the AV was
randomly selected for each experiment to incorporate this
element of randomness.

B. Hypothesis in the Preliminary Experiment
During the preliminary experiment, three conditions were

identified as having effective behavior change effects for the
main experiment: Hypothesis I, Hypothesis II, and Hypoth-
esis III.

Hypothesis I
It is important for users to be able to understand
and predict AV behavior.

Hypothesis II
Learning occurs when the user is exposed to a
large number of iterations of near-optimal behavior.

Hypothesis III
It is important to learn that the learner can
break free from HMI involvement.

Each of the subjects who experienced ideas most in line
with each of these hypotheses would have the following
properties:

Hypothesis I
The results of the 5-point Likert scale subjective
evaluation of the Understanding/Predictability item
of the Trust in Automation questionnaire[10] will
have the highest score.

Hypothesis II
The sum of F -values in the ”learning process”
will be the highest.

Hypothesis III
The decrease in F -value after the end of
learning process will be minimized.

C. Experiment Result
In the preliminary experiment, data were collected from

15 subjects, aged between 21 and 30. Each behavior change
idea was experienced by three subjects. The experiment’s
outcomes are presented in Fig. 5 and Table I. Idea 5 aligns
most closely with Hypothesis I, while Idea 3 correlates well
with both Hypothesis II and Hypothesis III.

Fig. 5. Results of preliminary experiment (F -value of each behavior
change idea).

TABLE I
SUM OF F -values IN THE LEARNING PROCESS.

Idea
number

Results of
Trust in

Automation
questionnaires.

Sum of
F -values in
the learning

process.

Displacement
of F -values
after learning.

1⃝ 15.0 13.85 0.30
2⃝ 15.3 13.47 0.21
3⃝ 15.3 14.77 -0.26
4⃝ 14.7 14.07 -0.03
5⃝ 16.7 14.61 0.32

VII. EXPERIMENT IN REAL SCENE

Experiments were conducted to confirm the effectiveness
of the behavior change ideas selected in the preliminary
experiment in real scene.

A. Scenarios

In the experiment, conditions were randomly chosen for
each trial from a pool of 18 possible combinations, compris-
ing 6 AV starting positions and 3 pedestrian walking starting
points. An overview of the placement of the vehicle starting
position and the pedestrian starting position is depicted in
Fig. 6. A scene of an experiment using actual AV is shown
in Fig. 7.

Fig. 6. Overview of AV start positions and subject start positions.

Fig. 7. Scenery of an experiment using an actual automated vehicle.
(Example of a scenario in which the vehicle enters straight ahead).

B. Experiment Results

The experiment involved a total of five subjects. Each
behavior change idea was experienced by two subjects using
the HMI, while one subject participated in 15 interactions
without any information presented. The experimental results
are presented in Figs. 8, 9, and 10.

In right-hand member of Formula (1), the left term is
referred to as the ”Pedestrian term,” denoting the efficiency
of the pedestrian as Vp

Tp
, while the right term is called the

”AV term,” representing the efficiency of the vehicle as Vv

Tv
.

VIII. DISCUSSION

This study examined and investigated the following three
points based on the results of the experiment in real scene:

• The impact of different experiment scenarios (vehicle
turning right or going straight) on the F -value.

• Transitions of F -value before and after the learning
process.



Fig. 8. Transitions of F -value in experiments.

Fig. 9. Transitions of Pedestrian term value in experiments.

• The relationship between the two terms (Pedestrian term
and AV term) that constitute the F -value.

A. The effect of the difference in the scenarios

The study verified the impact of variations in experiment
scenarios (right-turn intrusion and going straight ahead for
AVs) on the F -value, assuming that the F -value can
accurately assess the interaction’s optimality. Hence, it was
desirable to have a consistent distribution of F -value across
scenarios in the experiment. The 15 trials conducted by
each subject were divided into two groups: one for AV start
positions (1)-(3) and another for AV start positions (4)-(6).

First, the effect of differences in experiment scenarios
(right-turn intrusion and going straight ahead) on F -values
was examined, assuming that F -values could uniquely as-
sess the interaction’s optimality. Consequently, it was prefer-
able for the distribution of F-values to remain consistent
across the experiment scenarios. The 15 trials conducted
by each subject were divided into two groups: a group for
vehicle start positions (1)-(3) and a group for vehicle start
positions (4)-(6). The results of the statistical test for the
mean F -values in each scenario are presented in Table II.
The distribution of F -values for each group is illustrated in
Fig. 11. The significance level was set at 5%, and the results
indicate that the F -values exhibit different distributions
under different scenarios.

To mitigate the differences among scenarios, an effort
was made to normalize the F -values for each scenario.
The normality of the distribution of F -values for each
scenario was tested, and the results are displayed in Table
III. According to Table III, the distribution of F -values for
each group may exhibit normality. Therefore, the F ’-values,
which are values with reduced bias due to scenarios, were

Fig. 10. Transitions of AV term value in experiment in real scene.

determined using formula (2).
The F -values after normalization are shown in Figs. 12

and 11. Additionally, the results of the t-test for the distribu-
tion of F -values in each scenario group are presented again
in Table IV. Table IV demonstrates that the bias of F -values
due to scenarios was reduced.

Fig. 11. Distribution of F values for each scenario (AV turning right or
straight ahead along the road senario).

TABLE II
RESULTS OF TESTS OF THE MEAN FOR EACH SCENARIO.

p-value of F-test 0.327(>0.05)
test result Inequality of dispersion was not observed.

t-value 5.653
p-value of T-test 2.882×10−7(<0.05)

test result Significant difference in means is observed

TABLE III
RESULTS OF SHAPIRO-WILK-TESTS FOR EACH SCENARIO.

p-value of right-turn
intrusion scenario 0.1804(>0.05)

test result Follow the normal distribution.
p-value of straight ahead

along the road senario 0.1484(>0.05)

test result Follow the normal distribution.

{
F ′ = 1 + F−µR

3σR
Right Turn

F ′ = 1 + F−µS

3σS
Straight

(2)

B. Transitions of F -value before and after the learning
process

The study examined the change in F ’-values before
and after the learning process. The results, comparing the
average of the F ’-values from the first three trials of the
”learning process” with the average of the F ’-values from
the five trials conducted in the ”test process,” are presented
in Fig. 13. The data in Fig. 13 reveal that the two subjects



Fig. 12. F ’-values were calculated for the experimental results to reduce
the bias of F -values due to differences in scenarios.

TABLE IV
RESULTS OF TESTS OF THE MEANS FOR EACH SCENARIO.

p-value of F-test 0.004(<0.05)
test result Inequality of dispersion was observed.

t-value -0.792
p-value of T-test 0.4306(>0.05)

test result Significant difference in means
is not observed

who experienced behavior change Idea 5 showed a higher
improvement rate of F ’-values before and after learning
compared to the subjects who were not presented with
information.

Fig. 13. Improvement rate of F ’-value: Graph showing the average F ’-
value after learning (11 to 15 trials) divided by the average F ’-value at
the beginning of learning (1 to 3 trials).

C. Relationship between Pedestrian term and AV term

The study investigated the relationship between the two
terms (Pedestrian term and AV term) that constitute the F -
value. The Pearson’s correlation coefficients of the Pedes-
trian and AV terms for each subject are presented in Fig.
14. From Fig. 14, it is evident that for behavior change Idea
5, the AV term and Pedestrian term exhibit a larger positive
correlation compared to the other subjects. This suggests that
pedestrians might have learned behaviors that strike a balance
between the benefits of AV and their own benefits.

Fig. 14. Graph showing correlation between Pedestrian term and AV term
during learning.

IX. CONCLUSIONS

In this study, we introduced and created an HMI prototype
that aids pedestrians in learning to interact with AV through
the application of AR technology and behavioral economics.
The preliminary experiments and main experiments demon-
strated the potential of supporting effective communication
between pedestrians and AV. By providing relevant infor-
mation, such as real-time displays of road safety during
the learning process, the HMI prototype encouraged natural
behavioral changes in pedestrians.

ACKNOWLEDGMENT

This research is the result of joint research by Hitachi,
Ltd. and Kyushu University.

REFERENCES

[1] Shuchisnigdha Deb, Lesley J Strawderman, and Daniel W Carruth.
Investigating pedestrian suggestions for external features on fully
autonomous vehicles: A virtual reality experiment. Transportation
research part F: traffic psychology and behaviour, 59:135–149, 2018.

[2] Kai Holländer, Ashley Colley, Christian Mai, Jonna Häkkilä, Florian
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[4] Matúš Šucha. Road users’ strategies and communication: driver-
pedestrian interaction. Transport Research Arena (TRA), 1, 2014.

[5] Manon Prédhumeau, Anne Spalanzani, and Julie Dugdale. Pedestrian
behavior in shared spaces with autonomous vehicles: An integrated
framework and review. IEEE Transactions on Intelligent Vehicles,
8(1):438–457, 2023.

[6] Naohiro Matsumura, Renate Fruchter, and Larry Leifer. Shikakeology:
designing triggers for behavior change. AI & SOCIETY, 30:419–429,
2015.

[7] Sebastian Stadler, Henriette Cornet, Tatiana Novaes Theoto, and Fritz
Frenkler. A tool, not a toy: Using virtual reality to evaluate the com-
munication between autonomous vehicles and pedestrians. Augmented
Reality and Virtual Reality: The Power of AR and VR for Business,
pages 203–216, 2019.

[8] Chia-Ming Chang, Koki Toda, Xinyue Gui, Stela H. Seo, and Takeo
Igarashi. Can eyes on a car reduce traffic accidents? In Proceedings of
the 14th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications, AutomotiveUI ’22, page 349–359,
New York, NY, USA, 2022. Association for Computing Machinery.

[9] Yiyuan Wang, Senuri Wijenayake, Marius Hoggenmüller, Luke Hes-
panhol, Stewart Worrall, and Martin Tomitsch. My eyes speak:
Improving perceived sociability of autonomous vehicles in shared
spaces through emotional robotic eyes. Proc. ACM Hum.-Comput.
Interact., 7(MHCI), sep 2023.

[10] Moritz Körber. Theoretical considerations and development of a
questionnaire to measure trust in automation. In Proceedings of
the 20th Congress of the International Ergonomics Association (IEA
2018) Volume VI: Transport Ergonomics and Human Factors (TEHF),
Aerospace Human Factors and Ergonomics 20, pages 13–30. Springer,
2019.


