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Abstract— 3D laser scanning by LiDAR sensors plays an im-
portant role for mobile robots to understand their surroundings.
Nevertheless, not all systems have high resolution and accuracy
due to hardware limitations, weather conditions, and so on.
Generative modeling of LiDAR data as scene priors is one of the
promising solutions to compensate for unreliable or incomplete
observations. In this paper, we propose a novel generative
model for learning LiDAR data based on generative adversarial
networks. As in the related studies, we process LiDAR data as
a compact yet lossless representation, a cylindrical depth map.
However, despite the smoothness of real-world objects, many
points on the depth map are dropped out through the laser
measurement, which causes learning difficulty on generative
models. To circumvent this issue, we introduce measurement
uncertainty into the generation process, which allows the model
to learn a disentangled representation of the underlying shape
and the dropout noises from a collection of real LiDAR data.
To simulate the lossy measurement, we adopt a differentiable
sampling framework to drop points based on the learned
uncertainty. We demonstrate the effectiveness of our method
on synthesis and reconstruction tasks using two datasets. We
further showcase potential applications by restoring LiDAR
data with various types of corruption.

I. INTRODUCTION

3D scene understanding is indispensable for mobile robots

to detect obstacle objects, find traversable paths, and explore

the real world. A typical representation of 3D scenes is

a point cloud, which can be measured by various range-

scanning devices such as 3D LiDARs and RGB-D cameras.

In particular, 3D LiDARs are widely used for autonomous

driving systems to enable their perception capabilities such

as SLAM, object detection, and semantic segmentation.

A 3D LiDAR calculates distances based on the time-of-

flight of pulsed laser emitted and reflected at multiple eleva-

tion/azimuth angles. However, to gain the angular resolution

and precision, it requires many scanner units and sufficient

housing size, which could conflict with system requirements.

Moreover, the measured points could have noises under

adverse weather. The purpose of this study is to reconstruct

high-quality point clouds from such limited or corrupted

observations. However, it is non-trivial to manipulate a num-

ber of raw points with semantic consistency. One promising

approach is to learn a generative model of point clouds as

scene priors and to find the high-quality sample nearest to

the observation.

Generative models have received considerable attention

owing to recent advances in representation learning with

deep neural networks. In particular, generative adversarial
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(b) Reconstruction of unseen data from KITTI [1] test set

Fig. 1. A concept of our proposed generative model for LiDAR data. (a)
With only noisy training data, our proposed method can learn an underlying
complete depth map and a measurability map that simulates dropout noises.
(b) The trained model can be used to reconstruct unseen data.

networks (GANs) [2] are a popular framework for building

a generative model. GANs have been actively studied on 2D

tasks such as generating photo-realistic natural images [3, 4],

while they can also be used to model 3D data such as point

clouds. Several studies [5, 6] proposed generative models that

produce point clouds as a set of unordered points and demon-

strated on data uniformly sampled from CAD models [7] In

contrast, the point clouds by 3D LiDARs are often large,

non-uniform, and sparse, as they are measured by radiated

lasers centering on the sensor head. In other perception tasks

with LiDAR data, projection-based 2D representations have

also been studied, such as sensor-view depth images by

spherical projection [8, 9] and bird’s eye view [10]. The 2D

approaches have advantages in computational efficiency: the

processing can be designed with 2D convolutional networks,

less problem on the sparsity, and the representation is com-

pact yet lossless for spherical projection. In semantic point

segmentation [9, 10] and object detection tasks [8], these

approaches have gained performance in practice.

The goal of this study is to build a generative model

of LiDAR data based on the 2D representation [8]–[12].

In particular, we use the sensor-view representation. Caccia

et al. [11] is closely related to our task, which trained

GANs and variational autoencoders (VAEs) with Cartesian

points projected onto sensor-view grids. However, we found

that training generative models on this 2D representation



is still challenging because of LiDAR-specific noises. As

seen in Fig. 1(b), the projected image involves scattered

dropout noises. The noises are due to the reflection failure

of laser measurement, hereinafter called point-drops. Caccia

et al. [11] handled this issue by interpolating all the point-

drops by neighbor pixels, however, the heuristic imputation

could cause unnatural structures.

In this paper, we introduce a novel GAN framework

to synthesize depth with uncertainty from styles, named

DUSty. Our key idea is to introduce measurement uncer-

tainty into the generation process so that the underlying

complete signals can be modeled implicitly. As shown in

Fig. 1(a), our model produces a complete depth map and the

corresponding measurability to sample realistic dusty point-

drops. Our proposed model can be trained only with raw

LiDAR data involving point-drops. We evaluated our method

on two LiDAR datasets for driving scenes: KITTI [1] and

MPO [13]. We demonstrate that our method successively

synthesizes realistic LiDAR data, learning the underlying

complete shape. We also demonstrate the reconstruction

capability for unseen real data in various corruption settings.

The code will be available at https://github.com/

kazuto1011/dusty-gan.

The main contributions can be summarized as follows:

• We propose a noise-aware GAN framework DUSty,

which models a complete depth map and the corre-

sponding measurability from real LiDAR data.

• We introduce a differentiable relaxation to learn the

discrete distribution of point-drops.

• We demonstrate the effectiveness of our approach

on synthesis and reconstruction tasks on two LiDAR

datasets.

II. RELATED WORK

A. Synthesizing LiDAR Data

Generative modeling of point clouds is a challenging

task emerged in recent years. Most studies focused on

small point sets sampled from CAD objects [5], but rarely

on LiDAR point clouds. There have been studies based

on simulated environments [9, 12], but their diversity was

limited to defined cases. Only Caccia et al. [11] worked

on modeling LiDAR data with two popular frameworks for

deep generative models: variational autoencoders (VAEs) and

GANs. The authors revealed that 2D representation was

much better for LiDAR data than for point sets. However, the

study evaluated quantitative performance on reconstruction

tasks only for VAEs. In this paper, we provide the results of

both quality and diversity metrics for GANs on the synthesis

task and demonstrate the improvement in the reconstruction

task. In particular, we found that simulating point-drops was

important for training GANs effectively.

For obstacle detection tasks, recent studies [9, 12] revealed

that simulating point-drops could mitigate the domain gap

between the real and simulated environments. Wu et al. [9]

calculated the spatial prior from real LiDAR scans to sample

dropout noises. However, the sampled noise is independent

of the instance. Manivasagam et al. [12] trained U-Net to

predict point-drops as a binary classification task. However,

the drop prediction requires clean LiDAR data superimposed

by multiple scans, and the classification probability is not cal-

ibrated. In contrast, our approach only requires noisy LiDAR

data and can implicitly model the data-dependent uncertainty

of point measurability. As we discuss in Section V, our

learned generator can be used to estimate realistic point-

drops from given observable points.

B. Modeling Image Noises

Some studies leveraged noisy training data for denoising

images [14] and synthesizing novel clean images [15]–[17].

Lehtinen et al. [14] eliminated various types of synthetic

noises, including multiplicative Bernoulli noise, which ran-

domly masked a pixel to zero with a certain probability. Bora

et al. [16] learned GANs from partially-zeroed images. We

assume that point-drops in LiDAR sensing can be categorized

as this type of noise. However, these studies [14, 16] assume

a predefined noise model, such as pixel-level or patch-level

dropouts with a fixed probability. Kaneko and Harada [15]

proposed GAN architectures that can estimate noise distri-

bution, but multiplicative binary noises are not covered. Li

et al. [17] learn the distribution of binary noises, however,

the noise is independent of signals and approximated with

sigmoid outputs.

As in [14, 16, 17], we assume multiplicative Bernoulli

noises to mimic the point-drops on the LiDAR scan map.

However, we do not set the probability; instead, we aim

to learn the pixel-wise probability model. Specifically, in

our case, the noise distribution type is defined, but the

noise level and the generative relationship to the depth

modality are unknown owing to the complex physical factors

in measurement. Meanwhile, generating binary masks with

Bernoulli distribution is not differentiable, which means

inability to learn the parameterized probability model by

backpropagation. Therefore, this study employs the Gumbel-

Softmax trick [18, 19], a reparametrization approach for

discrete sampling.

III. OUR APPROACH

A. Data Representation

This paper assumes a bijective image representation [11],

which is directly acquired from horizontal scanning of

multiple laser receptors aligned vertically. For example, a

LiDAR that emits , pulses for � elevation angles produces

� × , points with measured distances G, which can be

considered as a cylindrical depth map with a size of � ×, .

An existing study [11] trained GANs with the depth map

representation. However, we found it difficult to learn stably

without their preprocessing that narrows the spatial range of

the depth map. Instead, we propose another approach for data

representation motivated by monocular depth estimation. In

a typical setting of LiDARs, most pixels of the acquired

depth map represent a near-to-mid range, and most of the

dynamic range is occupied by few distant points in a long-

tail distribution. Therefore, to gain the dynamic range of the
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Fig. 2. Overview of our proposed GAN framework. Generator �\ produces the inverse depth map x̃z and the corresponding measurability map 0z ,
from the sampled latent code z ∼ N(0, O ) . The binary mask mz indicating point-drops is sampled from the measurability map 0z . Discriminator �q

distinguishes the processed inverse depth map xz from the real data xreal.

majority regions, we transform the LiDAR depth map into an

inverse form 1/G, i.e., an inverse depth map. We will discuss

how we can synthesize the cylindrical inverse depth maps

throughout this paper.

B. Decomposed Synthesis of LiDAR Scans

A GAN typically consists of two networks: a generator

� \ and a discriminator �q , where \ and q are trainable

parameters. In image synthesis tasks, � \ maps a latent

variable z ∼ # (0, O) to an image xz = � \ (z), whereas

�q distinguishes the generated image xz from sampled real

images xreal. The networks are trained in an alternating

fashion by minimizing the adversarial objective, e.g., the

following non-saturating loss [2]:

L� = −EG [log �q (xreal)] − EI [log(1 − �q (� \ (z)))] (1)

L� = −EI [log �q (� \ (z))] . (2)

Here, � \ is modeled as a decoder convolutional network

that gradually upscales the spatial resolution toward the final

image. Although synthesizing natural images [3] has been

successfully achieved, we found it difficult to learn noisy

depth maps with a stack of naı̈ve convolutions.

Let us consider modeling a scene where a vehicle is

moving, for example. If all the points are observable on

the LiDAR receptor, the shape of the vehicle would be

smoothly morphed on the depth map. In this case, generating

a sequence of the depth maps is relatively easy if we move a

sampling point in the continuous data space by manipulating

a set of convolution kernels. However, in practice, some

points are randomly dropped at the pixel level because

of complex physical factors (such as mirror diffusion and

material reflectance). In these cases, the scattered point-drops

make the morphing discrete and cause learning difficulty.

Our key idea is to simulate the point-drop phenomenon by

a probabilistically invertible function to learn the underlying

manifold of smooth depth separately.

To this end, we introduce a decomposed depth map

representation into adversarial training. An overview of our

approach is depicted in Fig. 2. First, we assume a dense

inverse depth map x̃z ∈ R�×, and a measurability map

0z ∈ R�×, that represents the probability of laser reflection

(e.g., mirror-like materials have low confidence in returning

lasers due to the diffuse reflection, which results in point-

drops). We sample a binary mask mz ∈ {0, 1}�×, from the

measurability map 0z .

mz ∼ Bernoulli (0z) (3)

The final synthetic scan xz is produced by masking the

dense inverse depth x̃z using the binary mask mz :

xz = mz ⊙ x̃z + (1 − mz) ⊙ U, (4)

where ⊙ is an element-wise product, and U is a constant

value representing the point-drop.

Note that sampling mz is not differentiable, and the

gradients cannot be propagated downstream. Therefore, we

reparameterize mz with the straight-through (ST) Gumbel-

Sigmoid1 distribution [18, 19] to estimate the gradients. We

first introduce the continuous relaxation m̃z as follows:

m̃z = sigmoid
( e + g1 − g2

g

)

, e = ln

(

0z

1 − 0z

)

, (5)

where e is a logit of 0z and g1, g2 ∈ R�×, are i.i.d.

samples from Gumbel(0, O), which perturbs e at the pixel

level. Moreover, g is a hyperparameter called temperature,

which controls the slope of the sigmoid function. With a

low value of g, the soft mask m̃z approaches a binary mask,

but the variance of the gradients is large. Finally, the soft

mask m̃z is discretized into the binary mask mz at each

pixel location (8, 9) as follows:

m
8, 9
z =

{

1 m̃
8, 9
z ≥ 0.5

0 m̃
8, 9
z < 0.5

(6)

ST Gumbel-Sigmoid [18, 19] approximates this threshold-

ing by an identity function to enable gradient propagation:

i.e., we use the stochastic binary mask mz in the forward

step, and we approximate the gradients by m̃z during the

backward step. In summary, instead of modeling raw data

directly, our generator � \ aims to jointly produce the dense

inverse depth x̃z and the associated confidence of point

measurability 0z . Discriminator �q only determines the

realness of the processed inverse depth map xz in Eq. 4.

C. Multilevel Gumbel Sampling

As introduced above, the pixel-level Gumbel sampling

offers the differentiable binarizer. The stochastic behavior

can learn the pixel-level uncertainty. However, we observed

another level of uncertainty appear in real LiDAR data. For

1Gumbel-Sigmoid is a binary case of Gumbel-Softmax.
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Fig. 3. Multilevel Gumbel sampling. ⊙ denotes an element-wise product.

example, on the depth map of KITTI, some cars have point-

drops on only the transparent windows, while others are

missing most of the body. We assume colors and materials

cause this object-level multimodality of point drops even for

the same shape. The pixel-level Gumbel sampling is hard to

catch this distribution, and as a result, the variation would be

leaked into the latent space. We introduce a simple extension

to separate the object-level uncertainty from the latent space.

Revisiting Eq. 5, we made pixel-independent perturbations

to model the measurability. Here, we call the measurability

and the sampled mask as 0
pix
z and m

pix
z , respectively. We

now consider another measurability branch 0
img
z to be added

pixel-synchronized perturbations, where we sample scalars

61, 62 ∼ Gumbel(0, 1) in training and cancel them in testing

to switch to a deterministic mask m
img
z . The final mask mz

is determined by element-wise product m
pix
z ⊙ m

img
z .

IV. SYNTHESIS BY LATENT SAMPLING

We first report the synthesis performance of our proposed

methods by evaluating the similarity between the distribu-

tions of real data and sampled synthetic data. We further

discuss the reconstruction performance in Section V.

A. Dataset

We built the inverse depth maps from two types of LiDAR

datasets: KITTI [1] and MPO [13], which have different

vertical resolutions and scenes. The LiDARs of both the

KITTI and MPO datasets have the same distance range of

(0.9<, 120<), where we take the reciprocal of the distances

and normalize the range into (−1, 1) for the training stability

of GANs. When reconstructing point clouds from the inverse

depth map, we use the per-pixel average angles calculated

from the training set.

1) KITTI: We used the KITTI odometry [1] dataset, which

is a benchmark for odometry evaluation. The dataset provides

22 trajectories of LiDAR scans measured by the Velodyne

HDL-64E2 scanner, where each scan has 64 layers vertically.

It includes 19,310 scans for training, 4,071 scans for vali-

dation, and 20,351 scans for testing. The provided data are

processed sequences of Cartesian coordinate points ordered

by azimuth and elevation angles. Most studies applied spher-

ical projection to create a depth map from the point sets.

However, this approach produces sampling artifacts due to

the scanner’s nonlinear vertical spacing3. As in Caccia et

2https://velodynelidar.com/products/hdl-64e/
3The HDL-64E scanner has several versions with different vertical

spacing, but it was not unified in studies with KITTI.

TABLE I

BASELINE ARCHITECTURE. � AND , ARE THE HEIGHT AND WIDTH OF

THE INVERSE DEPTH MAP, RESPECTIVELY. †THE SHAPE IS REPLACED

WITH 2 × � ×, FOR DUSTY-I AND 3 × � ×, FOR DUSTY-II.

Layer Kernel size Nonlinearity Output shape

G
en

er
at

o
r
�

\ (Input) – – 512 × 1 × 1
Transposed Conv. �/16 × , /16 Leaky ReLU 512 × �/16 × , /16
Transposed Conv. 4 × 4 Leaky ReLU 256 × �/8 × , /8
Transposed Conv. 4 × 4 Leaky ReLU 128 × �/4 × , /4
Transposed Conv. 4 × 4 Leaky ReLU 64 × �/2 × , /2
Transposed Conv. 4 × 4 Tanh 1 × � × , †

D
is

cr
im

in
at

o
r
�

q (Input) – – 1 × � × ,
Blur filtering [15] 3 × 3 – 2 × � × ,
Convolution 4 × 4 Leaky ReLU 64 × �/2 × , /2
Convolution 4 × 4 Leaky ReLU 128 × �/4 × , /4
Convolution 4 × 4 Leaky ReLU 256 × �/8 × , /8
Convolution 4 × 4 Leaky ReLU 512 × �/16 × , /16
Convolution �/16 × , /16 – 1 × 1 × 1

al. [11], we first chunk the ordered sequence into 64 sub-

sequences, where each represents one elevation angle. We

then subsample 256 points for each sub-sequence and stack

them to form a 64× 256 inverse depth map. Unlike [11], we

do not clip the vertical angle and the distance range and do

not fill in the point-drops with adjacent pixels4.

2) MPO: We also use the Multimodal Panoramic 3D

Outdoor dataset (MPO) [13]. In particular, we use a “sparse”

dataset of MPO, which includes a total of 34,200 LiDAR

scans from 60 trajectories. The dataset has diversity in geom-

etry and point-drop distribution because it was constructed

to classify six different outdoor scenes: coast, forest, indoor

parking, outdoor parking, residential area, and urban area.

Each scan is a sequence of Cartesian coordinate points

with vertical angle IDs, obtained using Velodyne HDL-32E5

scanner. In this study, we split the trajectories into 20,322

scans for training, 3,787 scans for validation, and 10,091

scans for testing. We chunk the sequence according to the

vertical angle ID and create a 32 × 256 inverse depth map

similar to the KITTI procedure.

B. Models

1) Baseline: Table I shows the network architectures of

our baseline GAN. The architecture design is inspired by the

existing work [11]. However, we modify the output shape

for our task, remove all normalization layers, and only use

the Leaky ReLU nonlinearity with a negative slope of 0.2.

We add vertical/horizontal blur filtering [15] as the first

layer of the discriminator, to mitigate the learning difficulty

of a discrete distribution. As in existing studies [20, 21],

we replace the zero-padding of all convolutional layers

with horizontal circular padding, where the right and left

boundaries are padded with the pixels on the opposite sides.

It enables the model to spread the receptive fields out of the

boundaries so that it can process the cylindrical tensors.

2) DUSty-I (ours): For a fair comparison, in this method,

we only modify the last convolutional layer of the baseline

4https://github.com/pclucas14/lidar_generation
5https://velodynelidar.com/products/hdl-32e/



generator. The last layer produces 2-channel outputs for

inverse depth and measurability. The tanh nonlinearity is

applied to only the inverse depth output. The measurability

output is transformed into a binary mask with pixel-level

Gumbel sampling, as introduced in Section III-B.

3) DUSty-II (ours): In this method, we add an extra

channel to the measurability output of the DUSty-I model to

decompose the Gumbel sampling into pixel-level and image-

level, as introduced in Section III-C. The same temperature

g is used for both pixel-level and image-level Gumbel

sampling.

C. Implementation Details

We set the maximum distance to the point-drop constant

U in Eq. 4. Moreover, we observed that a low value of

temperature g in Eq. 5 slowed the convergence despite a

better approximation of the binary masks. This study uses a

fixed g = 1 in all experiments. For Gumbel sampling from

measurability 0 in Eq. 5, our network directly outputs the

logit e, instead of 0 = sigmoid(e). For adversarial training,

we use the non-saturating loss in Eq. 1 and 2, with a '1

gradient penalty [3]. The penalty coefficient was set to 1.

All parameters were updated by Adam [22] optimizer for

25M iterations with a learning rate of 0.002 and a batch

size of 32. We apply the equalized learning rate [4] for all

trainable layers, where the parameters are initialized with

N(0, 1) and scaled by He’s initialization constant at runtime.

Moreover, we apply DiffAugment by Zhao et al. [23], which

composed of color, translation, and cutout augmentations to

the discriminator inputs. For the translation augmentation,

we circulate the inputs horizontally. DiffAugment was not

required for training stability but greatly improved the quality

of inverse depth maps. We take the exponential moving

average for generator parameters \. We implemented our net-

works in PyTorch and performed distributed training on two

NVIDIA Titan RTX GPUs. The training required approxi-

mately 22 hours for each model. The code will be available at

https://github.com/kazuto1011/dusty-gan.

D. Evaluation Metrics

We measured four types of distributional similarities be-

tween the sets of reference and generated point clouds [5]:

Jensen–Shannon divergence (JSD) for quality, coverage

(COV) for diversity, minimum matching distance (MMD)

for quality, and 1-nearest neighbor accuracy (1-NNA) for

both quality and diversity evaluation. We found that the

synthesis evaluation on LiDAR point clouds had an ex-

tremely high cost, particularly for calculating the distance

matrix for the sets of point clouds in COV, MMD, and

1-NNA. For efficiency, we first subsampled the series of

test data to be 5,000 data in total, and for each, we also

randomly subsampled 2,048 points from the full � × ,

points by farthest point sampling. We generated 5,000 data

from each model and reduced the number of points in the

same manner. We used the Chamfer distance to measure the

pairwise similarity for the distance matrix of point clouds.

Additionally, we computed the sliced Wasserstein distance

(a) Scores on KITTI validation set

(b) Scores on MPO validation set

Fig. 4. Impact of relative tolerance V for the baseline method. We optimized
V based on the weighted score and set 0.008 for KITTI and 0.0065 for MPO
(dotted vertical lines).

(SWD) [4] to measure the patch-based image similarity

for the inverse depth maps. For all metrics, we report the

mean scores with the standard deviation over five runs with

different latent codes.

E. Quantitative Results

It is non-trivial for the baseline model to produce values

that exactly match the point-drop constant U. Therefore, we

first optimize a relative tolerance V to decide if an interest

pixel x
8, 9
z is U based on

‖x8, 9z − U‖
Gmax − Gmin

≤ V, (7)

where Gmax − Gmin is a range of the inverse depth. V is

optimized by HyperOpt [24] within [10−3, 10−1] for 100

steps to minimize the following weighted 3D score, JSD ×
10 − COV +MMD × 102 + 1-NNA, on the validation set for

each dataset. For efficiency, we reduce the number of points

to 512. Fig. 4 shows trade-off results because the point-drop

tolerance erodes the available range of inverse depth. We

employ V = 0.008 for KITTI and V = 0.0065 for MPO. We

note that our noise-aware model DUSty does not require the

tolerance, i.e., V = 0.

In Table II, we compare the synthesis performance among

the baseline and our methods. On both KITTI [1] and

MPO [13] datasets, our methods outperformed the baseline

on all the 3D metrics. On the SWD score, the baseline was

better than DUSty-I on KITTI, while our methods outper-

formed in the other cases. We consider that our sampling-

based binary mask still has an “appearance” gap with the

truth distribution of point-drops compared with the direct

modeling by the baseline. Meanwhile, the 3D results on

four metrics indicate that our decomposition approach has a

positive effect on the disentangled modeling of inverse depth

and point-drop.

F. Qualitative Results

Fig. 5 compares inverse depth maps generated from the

baseline and our DUSty-I model on the KITTI dataset.

Our method succeeds in representing the sharp jump edges

around point-drops. However, the baseline has interpolated

pixels that can be unexpected noise in point clouds. More-

over, we show some synthetic examples of all methods for



TABLE II

QUANTITATIVE COMPARISON OF SYNTHESIS PERFORMANCE. ↓: THE LOWER THE BETTER. ↑: THE HIGHER THE BETTER.

Dataset Method
JSD ×102 ↓ COV [%] ↑ MMD ×103 ↓ 1-NNA [%] ↓ SWD ↓
(3D quality) (3D diversity) (3D quality) (3D quality/diversity) (2D quality)

KITTI

Baseline 6.45 ± 0.06 4.99 ± 0.04 2.36 ± 0.03 99.99 ± 0.00 0.158 ± 0.011
DUSty-I (ours) 2.85 ± 0.01 38.08 ± 0.55 1.14 ± 0.01 93.69 ± 0.19 0.167 ± 0.010
DUSty-II (ours) 3.54 ± 0.07 38.05 ± 0.65 1.12 ± 0.01 94.62 ± 0.30 0.151 ± 0.011

Training set 0.93 35.02 0.87 96.72 0.182

MPO

Baseline 2.53 ± 0.03 6.10 ± 0.12 2.03 ± 0.01 99.31 ± 0.03 0.180 ± 0.013
DUSty-I (ours) 1.47 ± 0.02 22.85 ± 0.34 1.53 ± 0.01 95.03 ± 0.16 0.174 ± 0.014
DUSty-II (ours) 1.71 ± 0.02 30.94 ± 0.34 1.54 ± 0.01 94.84 ± 0.19 0.160 ± 0.018

Training set 0.74 34.88 1.52 87.09 0.158

Z
o
o
m

x
z

P
o
in

t
cl

o
u
d
s

(a) Baseline (b) DUSty-I (ours)

Fig. 5. Qualitative comparison of inverse depth outputs xz , zoomed-
in regions (white boxes in xz ), and points clouds, with and without the
proposed measurability learning. Best viewed in color.

KITTI in Fig. 6 and MPO in Fig. 7. We can see that

our methods DUSty-I and DUSty-II successfully learned a

complete inverse depth maps in x̃z and drop uncertainty

in 0z . Regarding 0z , the results show that the sampling

variation would occur on the boundaries of vehicle-like

objects and the scattered noises. In contrast, the steady point-

drops are represented as sufficiently low measurability, such

as the ego-vehicle shadows in KITTI and the sky regions

in MPO. Furthermore, DUSty-II separately learned the pixel

correlation of the drop uncertainty in 0
img
z .

V. RECONSTRUCTION BY LATENT SPACE EXPLORATION

With trained GANs, we can reproduce the given data by

optimizing a latent code [3, 25], where the task is called GAN

inversion. In this section, we optimize the latent code z to

reconstruct unseen LiDAR data from KITTI and MPO test

sets. We demonstrate our decomposition approach is easier

to find a matching latent code.

A. Objective

To reproduce a given inverse depth xtarget, we optimize the

latent code z by minimizing the L1 distance between xtarget

xreal

(a) Training data

xz

(b) Baseline

x̃z

πz

xz

(c) DUSty-I (ours)

x̃z

π
pix
z

π
img
z

xz

(d) DUSty-II (ours)

Fig. 6. Qualitative comparison on the KITTI [1] dataset. Each column
is from a unique latent code. xreal and xz denotes real LiDAR data and
generated LiDAR data, respectively. x̃z and 0z denotes the inverse depth
and measurability outputs from our proposed models, respectively.

and generated inverse depth x̃z before masking:

ẑ = arg min
z

∑

8, 9 1[xtarget ≠ U]8, 9 ‖x8, 9target − x̃
8, 9
z ‖1

∑

8, 9 1[xtarget ≠ U]8, 9 , (8)

where 1[xtarget ≠ U] ∈ {0, 1}�×, is a point-drop indicator

of the target data xtarget, and (8, 9) is the 2D location of the

inverse depth map. The latent z ∈ R3 is updated for 1,000

iterations by the Adam optimizer with a learning rate of 0.1.

Considering the nature of high-dimensional Gaussian priors,

the search space of the latent z is constrained to a surface of

a hypersphere with a radius of
√
3 [25]. To avoid sticking in

local minima, we add a Gaussian noise n ∼ N(0, 0.05C2O),
where C goes from 1 to 0 in iterations [3]. The optimization

required approximately 4 seconds for each sample.

B. Quantitative Results

To assess the reconstruction performance, we compute

standard metrics in depth estimation [1]: relative absolute
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Fig. 7. Qualitative comparison on the MPO [13] dataset. Each column is
from a unique latent code.

Target

Baseline

DUSty-I

DUSty-II

Fig. 8. Qualitative comparison of the reconstructed inverse depth maps.
Our method is better at reproducing the geometric features of the given
targets and generating realistic point-drops.

error (Abs Rel), relative squared error (Sq Rel), root mean

squared error (RMSE), RMSE on logarithmic depth (RMSE

log), and the ratio of pixels with relative error X under the

threshold (X < 1.258 , 8 = 1, 2, 3). Moreover, we also compute

the Chamfer distance (CD) between point clouds from xtarget

and xẑ . Table III shows the results of the baseline and our

proposed methods. Our method outperformed the baseline on

all the metrics, and DUSty-I was slightly better than DUSty-

II in most cases.

C. Qualitative Results

Fig. 8 compares the reconstructed inverse depth maps xẑ
from the baseline and our methods. The baseline failed to

reconstruct some foreground objects (ẑ ← xtarget), contrary

to the synthesis results in Fig. 5 and 6 (z → xz). In contrast,

our method reproduced the details and also synthesized more

realistic point-drops. This indicates that our decomposition

trick yields a better embedding of the geometric styles of

LiDAR scans.

D. Applications

In Fig. 9, we show some examples from DUSty-I, where

the targets are with three types of strong corruptions: 90% of

points are randomly dropped (Fig. 9(b)), 8 out of 64 horizon-

tal lines are observable (Fig. 9(c)), and pixel-wise noise from

N(0, 0.01) are added to the depth values (Fig. 9(d)). Despite

very sparse or noisy targets xtarget, our method succeeded in

reconstructing inverse depth maps with underlying complete

surfaces x̃ẑ and rendering realistic point-drops. On the other

hand, we can also observe that the far objects and thin

structures are still difficult to reconstruct in some cases.

VI. CONCLUSION

In this paper, we proposed DUSty, a GAN framework

for LiDAR scan synthesis based on the decomposed image

representation of inverse depth and point-drop. Our method

showed effectiveness on both synthesis and reconstruction

tasks compared to the baseline that directly models the

LiDAR scans. The reconstruction experiments indicated po-

tential applications of our method, such as restoration of

corrupted data and upsampling of sparse scans from low-

cost LiDARs. Our method would also be applicable to ren-

dering realistic point-drops for fully measurable simulation

data [9, 12] since our pixel-wise depth reconstruction can

simultaneously produce a measurability map. Although this

study used standard GAN architectures, further investigation

on the network design could improve the generation quality.

Future work includes introducing our point-drop learning

into the other large networks [3, 4] and applying our syn-

thetic data to perception tasks.
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