Mobile Robot Navigation Using Learning-Based Method Based on
Predictive State Representation in a Dynamic Environment

Kohei Matsumoto!, Akihiro Kawamura?, Qi An?, and Ryo Kurazume

Abstract— Mobile robot navigation in a dynamic environment
with pedestrians is essential for service robots operating in a
living environment. Accordingly, the robot needs to understand
and predict the behavior of pedestrians. However, predicting
pedestrian behavior in advance is difficult because human
behavior may be affected by factors that cannot be directly
observed or modeled in advance, such as intentions and
environmental influences. In addition, pedestrian behavior may
be affected by the behavior of the robot.

In this study, we apply a deep reinforcement learning method
based on a novel predictive state representation (PSR) model
to mobile robot navigation for realizing a navigation method
considering the changes in pedestrian behavior caused by robot
actions and other pedestrians. In addition, we propose two
methods for integrating the states of the PSRs corresponding to
each pedestrian and evaluate these methods in situations where
the number of pedestrians differs between learning and testing.

I. INTRODUCTION

Mobile robot navigation in dynamic environments is an
important element for service robots that provide services
in spaces inhabited by humans. Handling this task requires
the robots to understand the behavior of pedestrians. How-
ever, pedestrian behavior may change depending on their
intentions and other factors that depend on particular en-
vironments. Thus, it cannot be easily modeled in advance
with sufficient accuracy, particularly if the road shape and
attractions in the environment (e.g., stores or scenery) are
considered. Furthermore, the behavior of the robot may affect
the pedestrian behavior.

To address these issues, we propose a learning-based
method based on predictive state representation (PSR) that
considers the changes in pedestrian behavior caused by robot
actions. This method can learn the behavior of pedestrians
by observing their interactions with the environment and
the changes in their behavior due to the robot’s actions.
Mobile robot navigation methods based on deep reinforce-
ment learning (RL) have been actively studied in recent
years [1]-[5]. However, the methods proposed so far mainly
use predesigned models or do not specifically consider the
changes in pedestrian behavior caused by robot actions.

In this study, we apply a deep RL method based on the
new PSR model to mobile robot navigation for considering
the changes in pedestrian behavior caused by robot actions

1Kohei Matsumoto is with the Graduate School of Information Science
and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
matsumoto@irvs.ait.kyushu-u.ac. jp

2Akihiro Kawamura, Qi An, and Ryo Kurazume are with the Fac-
ulty of Information Science and Electrical Engineering, Kyushu Uni-
versity, Fukuoka 819-0395, Japan {kawamura, angi, kurazume}
@ait.kyushu-u.ac.jp

2

Current step Next step

fo}

Fig. 1: PSR modeling for mobile robot navigation in a dynamic environment
with pedestrians

and other pedestrians. In addition, we consider the situation
where the number of pedestrians changes between training
and testing. The main contributions of this study are as
follows:

o the application of a deep RL method using PSR for
mobile robot navigation and the verification of the
effects of the structure based on PSR for mobile robot
navigation tasks;

e proposing a new PSR architecture for mobile robot
navigation in a dynamic environment with pedestrians
considering the interactions among pedestrians and the
verification of the effectiveness of the architecture;

o proposing methods for integrating the states of the
PSRs corresponding to each pedestrian for handling the
change in the number of pedestrians between training
and testing, and comparing these integrating methods.

II. RELATED WORKS

Various methods based on deep RL techniques have been
proposed. Everett et al. [1] proposed a method based on
policy-based RL and long short-term memory. Chen et al. [2]
proposed a pooling module for learning the relationships be-
tween the attention mechanism, changes in human behavior,
and surrounding pedestrians; they also proposed a method
to learn robot behavior, including human-robot and human—
human interactions. Chen et al. [3] proposed an excellent
navigation method that uses a graph convolutional network
and attention mechanism based on human gaze. Chen et
al. [4] used model-based deep RL methods and a graph
convolutional network to achieve efficient navigation by
encoding the interactions among agents. Liu [5] proposed a
deep RL method that focuses on robot navigation in crowded
real-world environments.

PSR [6] is used for modeling dynamics by considering
partial observability. Various methods for utilizing PSR have
been proposed. Boots et al. [7] proposed an extended PSR
model based on the Hilbert space embeddings of distribu-
tions to manage infinite sets of continuous observations and

actions. Hefny et al. [8] proposed a supervised learning
method based on the kernel version of instrumental variable
regression for PSR models. They also proposed an effi-
cient PSR model for learning controlled dynamical systems
using random Fourier features with a kernel function [9].
In addition, methods utilizing PSR for deep learning have
been proposed recently. Venkatraman er al. [10] studied the
use of PSR for representing the latent states of recurrent
neural networks (RNNs). They observed that the proposed
method could improve the performance and compensate for
the disadvantages of RNN in probabilistic filtering, imitation
learning, and RL. Hefny et al. [11] proposed a fundamental
deep RL method, called the recurrent predictive state policy
network, to utilize PSR.

In robotics, PSR has been applied in human—robot com-
munication by utilizing its ability to model the results after
performing actions [12]. It has also been applied in in-
hand manipulation, which includes interactions with the en-
vironment [13]. This method extends PSR to address partial
observability using a new kernel-based feature that integrates
actions and observations. However, PSR has not yet been
applied to mobile robot navigation in dynamic environments.

ITI. PRELIMINARIES
A. Predictive state representation

In PSR [6], the dynamics are modeled considering the
interactions between an agent and the environment. The
characteristic of PSR is that the state is expressed in a
way that facilitates the prediction of the future. The state is
represented by observations and actions. Therefore, values
other than the fully observable elements do not need to be
defined. In this section, we describe PSR in detail.

1) Original PSR: The basic concept of PSR is that, if the
expected results of all possible tests are known, the dynam-
ical system becomes completely understood. By expressing
the state using observable information, partially observable
dynamic systems can be modeled without prior knowledge.
Consider a discrete system with a finite set of observations,
O = {01,09,...,01}, and actions, A = {ay,aq9,...,a;}.
The state representation of the system at time ¢ is a vector
composed of the probability of occurrence of a test based
on the latest history. Each test is a sequence of actions
and observations starting at time ¢ 4 1; the history at time
t is a sequence of actions and observations up to and
including time ¢. The probability of success of a test, T,
of length m for history h, i.e., the probability of obtaining
an observation sequence in 7 when taking the sequence of
actions in 7, is represented by p(7 | h) = p(h,7)/p(h) =
IT2, Pr(o; | h.as).

Knowing the success probabilities of some tests may help
us understand those of other tests. Given a test set 7 =
{m1,72,..., 7Tk}, if there exists a function f; whose prediction
vector p(T | h) =[p(mi | h)p (T2 | h)...p (7% | h)] satisfies
p(mi | h) = fe(p(T | h)) for any test 7, then T is called the
core test and the prediction vector, p(T | h), represents the
state of PSR.

2) Recurrent PSR: The original PSR model can only be
applied to systems consisting of discrete observations and
actions. Methods to make PSR compatible with continuous
systems have been proposed [7], [9]. Herein, these methods
are collectively referred to as recurrent PSR (RPSR). In
RPSR, the state ¢, is represented as a conditional distribu-
tion of future observations, o04.44%—1, conditioned by future
actions, a;.;yx—1. The state update of RPSR is performed in
two steps.

« Extension: The linear map Wy, is applied to the state q;

to obtain the extended state, e;. The extended state, e;, is
a conditional distribution of the extended observations,
ot.++k, conditioned by the extended action, as.;4x:

et = WexQt- 1

o Conditioning: For the action a; and the observation o
at time ¢, the known conditioning function, f.,q, updates
the state as follows:

Gt+1 = fend (et, Gy, Ot) .)

In discrete systems, ¢; and e, are represented by conditional
establishment tables, and a Bayesian rule is applied by fcond-
To apply these to a continuous system, the Hilbert space
embeddings of the distributions [7] and the kernel Bayes’
rule [14] are used.

IV. APPROACH

A. Application of PSR to mobile robot navigation in a
dynamic environment with pedestrians

In this study, we applied a PSR-based deep RL method
to mobile robot navigation in a dynamic environment with
multiple pedestrians. The elements of mobile robot naviga-
tion and PSR can be associated as follows:

o Observations: The position and velocity data of N
pedestrians and the robot are treated as observations.
The observation data for each pedestrian and robot in-
clude vector (pt, p;,v;,v;), where (p%,, p},) represents
the position and (v;,v,) represents the velocity of the
1th pedestrian or robot.

e Actions: In this study, we assumed a holonomic om-
nidirectional mobile robot and used a two-dimensional
vector (v, vy) consisting of the input velocity v, in the
x-axis direction and the input velocity v, in the y-axis
direction of the robot in a two-dimensional space.

The PSR used in this study becomes a model that can predict
the position of the pedestrian and the velocity in the next
step by inputting the command velocity of the robot. The
conceptual diagram of the PSR model is shown in Fig. 1.

B. Architecture of proposed method

The architecture of the proposed method is shown in Fig.
2. The proposed method consists of a PSR consisting of a
feature extractor, state updater, and observation predictor, as
well as state integrator and value estimator.

o Feature extractor: It extracts features from each input

datum using a nonstationary spectral kernel function
[15], [16].

["] Feature extractor
PSR
[[] state updater

Robot

{ position | ['] Observation predictor
[Graph convolution
‘% [state integrator
J—% Value estimator
pa——
Observanonv Vad |state| > = Next state | > o S value
| =]
[Action Next

Fig. 2: Architecture o

State updater: It updates states via the state updater
using the features extracted from the observation and
action.

Observation predictor: It predicts the next observations
using the states features extracted from action.

State integrator: It integrates the states of the PSR corre-
sponding to each pedestrian and provides the integrated
state to the value estimator.

Value estimator: It estimates the value from the inte-
grated state and robot feature.

C. Graph convolutional RPSR

State B
State C

| State A
i Graph
| convolution !
> i

-» Nextstate A

State Next state B

Updater “5) NextstateC

. .~ >[Next observation A" "}
-z Observation --< .

3 predictor

I~ >Next observation B |

~>Next observation G| |

Action

Current step Next step

Fig. 3: Procedure of GC-RPSR

The basic RPSR model can consider the effect of the
action of the agent on the environment. Through this feature,
the effects of robot actions on each pedestrian can be consid-
ered. However, the RPSR cannot consider the effects of the
interactions among pedestrians. For handling this problem,
we propose graph convolutional RPSR (GC-RPSR).

This architecture has a graph convolution part in the state
update phase in the RPSR for describing the relation effects
among pedestrians. The state update process is shown in Fig.
3. The kernel function for the adjacency matrix A; is based
on the inverse of the Lo norm of the difference of each
position [17]. This function is expressed in Eq. (3).

1/’20%*1){ ,70
0

lf‘ i .0
) Py — Py

o
ay =
Otherwise

3)

Finally, we use the normalized adjacency matrix. The nor-
malization process is expressed in Eq. (4).

A= A;%Atf\;%, 4

observation |

f the proposed method

where A, = A, + I and A, is the diagonal node degree
matrix of A;.

By using the graph convolOS5tion and Egs. (1) and (2), the
state update process of GC-RPSR is expressed as follows:

Qv = fye (@ A2) 5)
et = WexeGt (6)
Qi1 = fend (et, Qg Ot) s (N

where fg. represents the function for graph convolution.

D. State integrator

We need an integration process to construct input data for
the value estimator from the state data corresponding to each
pedestrian. We propose two methods for the integration. The
first method uses graph convolution and the second method
is based on an occupancy map.

1) Integration using graph convolution: This method uses
graph convolution for integrating the states of the PSRs
corresponding to each pedestrian. The value estimator only
receives the robot feature to which graph convolution is
applied. The kernel function to be used for the adjacency
matrix is the same as the state update of the GC-RPSR
expressed in Eq. (3). The conceptual diagram of this method
is shown in Fig. 4.

2) Integration using occupancy map: This method uses an
occupancy map for integrating the states of the PSRs corre-
sponding to each pedestrian. The states of the pedestrians are
stored in the corresponding cell depending on the position of
each pedestrian. If multiple states are required to be stored
in the same cell, an average value is stored. The conceptual
diagram of this method is shown in Fig. 5.

E. Action generation

The action is generated using the value estimator f,,, state
updater f;l, and observation predictor f, from the PSR model
fp by selecting an action obtaining the maximum reward

State A State A

State B State B

Graph
convolution
Vaiue
estimator

State C State D State C State D

Robot feature Robot feature

Fig. 4:

State integration using graph convolution

State A]

N $! V_alue
estimator

State B

Input states to
the occupancy map

Integrate states
for each cell

State C

Fig. 5: State integration using an occupancy map

from the action space .A. The formulation is shown in Eq.
(8), where ~ is the discount factor, s; is the integrated state at
time ¢, p; is the robot position at time ¢, and 6; = f (g¢, ar).

ay < argmax, - 4R (0;) + YA fy (50, 1) 3

In addition, R(o;) is a reward function at time ¢. This
function is expressed in Eq. (9), where d; is the minimum
separation distance between the robot and the pedestrians
and p, is the goal position of the navigation task.

—0.25 if dy <0
_ —0.1+4d;/2 elseifd; <0.2
Roy) = 1 else if p; = pg ®)
0 otherwise

Accordingly, we use d-step planning [18] that considers a
d-step future. By rollout using the PSR and value estimator
d-step, the action is selected with the maximum return along
the d-step prediction using Eq. (10).

fﬁ (5t,p1) =
fo (st,pt) ifd=1
5.](‘5 (St,]?t) + % maxat(
R (6041) + 737" (8441, Pt41)) otherwise

(10)
where 6141 = fp (qi+1,at41), and Gev1 = fil (a1, ar, 01)-

F. Training process

Training is performed in two steps. The first step is an
initialization of the PSR model and the imitation learning
of the value estimator. Subsequently, we train the value
estimator using RL and the PSR model using supervised
learning.

1) Preliminary learning step: In the first step, the initial
values of the PSR parameters are determined. This initializa-
tion is performed through two-stage regression [8] after col-
lecting data using an exploration policy that follows ORCA
[19] for initialization. Subsequently, the value estimator is
trained in imitation learning using the collected data.

2) RL and supervised learning step: In the second step,
we train the entire model with Algorithm 1, where E is
the number of episodes for training and d is the target
update frequency. The value estimator is trained with the
RL procedure based on the bootstrapped DQN [20].

Algorithm 1: Optimization of the proposed method

Initialize the PSR f;, and the value estimator f, with
two-stage regression and imitation learning

Initialize the target value estimator f,

for i =1 to E do

Select a; following the exploration policy and obtain
the reward r;, observation o, and robot position p;

After finishing an episode, store the trajectory of
(ot, at, r+, pt) to buffer B

Sample from the buffer 3 and obtain M set of
trajectories

for j =1 to M do

Obtain the trajectories below,

: j Jj o J J
observation o’ = {0}, 03,..., 07},
robot position p’ = {p{,p3, ..., P},

: — J J J
action a’ = {af,a},...,a}}

Calculate the trajectories below,
state ’ = {q1, %%, qr},
target value y’ = {y7,93,...,v% },
integrated state s’ = {s7,s3,...,s}}
end

Update f, by minimizing Lyed = MSE(f; (q,a), 0)
Update f, by minimizing Lvawe = MSE(fy(s,p),y)
if i mod d then

‘ Update f, by fu + fo
end

end

V. EXPERIMENT

A. Implementation details

The structure of the value estimator is a multilayer percep-
tron with a hidden size of {500, 300}. In the RPSR structure,
the feature extractor uses 500 random Fourier features and
sets the PCA dimensionality reduction to 40 dimensions.
The parameters are trained using AdaBelief [21] in the
imitation, supervised, and reinforcement learning phases, and
the learning rate is 10~*. We trained our models in 10k
scenarios by setting the batch size of the trajectory to 5 and
the target update frequency to 1k. The discount factor 7y is
set to be 0.9. The e-greedy policy is used for the exploration
with decays from 0.5 to 0.1 linearly in the first 4k episodes.
The action space A consists of 80 discrete actions, consisting
of 5 velocities exponentially spaced between (0, 1] and 16
headings evenly spaced between [0, 27). Regarding action
generation, we set the depth and width of d-step planning to
2. For the state integration of the second model, we use an
occupancy map with a radius of 3 m, a distance resolution
of 0.3 m, and an angular resolution of 30°.

B. Experimental environment

We use the circle crossing scenarios in the CrowdNav
environment used in some related works [2], [4]. In this
environment, pedestrians are controlled by ORCA [19]. The
pedestrians are randomly placed on a circle of radius 4m, and
their position (z,y) is subjected to a random perturbation.
The robot and pedestrians are influenced by each other,

and their behavior changes with position and velocity. The
evaluation is conducted with 500 random test cases.

In the training phases of all the experiments and the testing
phases of the first and second experiments, we set the number
of pedestrians N to 5.

C. Comparison of GC-RPSR and RPSR

Here, we confirm the effectiveness of GC-RPSR by com-
paring it with the basic RPSR. We compare the success rate,
collision rate, execution time, and average return. We use
a simple concatenate for the state integrator. The result is
shown in Table 1.

TABLE I: Numerical comparison of RPSR and GC-RPSR

Method Success [%] | Collision [%] | Exec. time [s] | Avg. return
RPSR 57.8 33.8 8.84 0.258
GC-RPSR 64.0 11.0 8.73 0.356

Thus, GC-RPSR outperforms RPSR in terms of all the
evaluation items. Accordingly, the proposed PSR model
enhances the performance of the mobile robot navigation
task compared with basic RPSR.

D. Comparison models with baseline

Here, we compare the proposed models with a method
proposed in a related study [4], which is considered as the
baseline. The evaluation items are the same as earlier. Fig. 6
shows samples of the result trajectory of the proposed model
with state integration using graph convolution (GGC-RPSR)
and Fig. 7 shows samples of the result trajectory of the pro-
posed model with state integration using an occupancy map
(OGC-RPSR). In each figure, the black trajectory represents
the robot, the colored trajectories represent pedestrians, and
the numbers indicate time steps. Both methods can navigate
the robot to the goal while avoiding pedestrians. However,
GGC-RPSR has a higher efficiency because it can generate
shorter paths. The numerical comparison of the two proposed
methods and the baseline method is shown in Table II.

1 Robot

y(m)
o
y(m)
o

-4 2 [) 2 2

Robot

yim)
o

-4 -4

0
x(m) x(m)

Fig. 6: Sample trajectories of the results of the GGC-RPSR. The black tra-
jectories describe the robot, and the colored trajectories describe pedestrians.

y(m)
o
y(m)
o

-4 -4

x(m)

y(m)
o
y(m)
°

0 [
x(m) x(m)

Fig. 7: Sample trajectories of the results of the OGC-RPSR. The black tra-
jectories describe the robot, and the colored trajectories describe pedestrians.

TABLE II: Numerical comparison of the proposed methods and the baseline
method

Method Success [%] | Collision [%] | Exec. time [s] | Avg. return

RGL [4] 92.0 7.0 9.09 0.560
GGC-RPSR 94.6 5.4 7.788 0.587
OGC-RPSR 91.4 6.8 11.536 0.512

The GGC-RPSR outperforms the other methods in terms
of all the evaluation items. This result demonstrates the
effectiveness of the proposed method using GC-RPSR and
state integration using graph convolution. The GGC-RPSR
significantly outperforms the OGC-RPSR in terms of the
execution time.

E. Comparison of the models in the situation where the
number of pedestrians differs between training and testing

Here, we compared the two proposed methods in the
situation where the number of pedestrians differs between
training and testing. Both the models were trained using
an environment in which the number of pedestrians was 5
and were tested in environments in which the number of
pedestrians was 1 to 10.

The results of the two models are shown in Table III,
where N indicates the number of pedestrians. Thus, the
performance difference between the two methods can be
observed from the success rate by comparing with the result
for N = 5. The maximum decline of the success rate of the
GGC-RPSR is 43.4%; in contrast, the corresponding result
for the OGC-RPSR is 7.4%. This result shows that the OGC-
RPSR is more stable when the number of pedestrians is
varied between training and testing.

VI. CONCLUSION AND FUTURE WORK

This study applied a deep RL method based on PSR to
mobile robot navigation tasks in a dynamic environment with
pedestrians. We proposed a new PSR architecture for mobile
robot navigation in a dynamic environment with pedestrians
considering the interactions among pedestrians. In addition,

TABLE III: Results of the GGC-RPSR and OGC-RPSR while changing the number of pedestrians. The values in the brackets in the success rate column

show the difference from the result in the situation with N = 5.

GGC-RPSR OGC-RPSR
N Success [%] Collision [%] Exec. time [s] | Avg. return Success [%] Collision [%] | Exec. time [s] Avg. return
1 63.6 (— 31.0) 24 8.171 0.419 98.2 (+ 6.8) 0.6 10.983 0.587
2 68.2 (— 26.4) 16.4 8.109 0.393 95.0 (+ 3.6) 34 11.017 0.560
3 65.8 (— 28.8) 22.0 8.122 0.361 94.4 (+ 3.0) 4.8 11.126 0.548
4 91.0 (— 3.6) 5.8 7.988 0.556 92.0 (+ 0.6) 6.8 11.048 0.527
5 94.6 (£ 0.0) 54 7.788 0.587 91.4 (£ 0.0) 6.8 11.536 0.512
6 76.2 (— 18.4) 20.8 7.985 0.431 88.0 (— 3.4) 10.0 11.251 0.485
7 93.6 (— 1.0) 5.8 7.889 0.578 91.2 (- 0.2) 7.6 11.327 0.502
8 89.0 (— 5.6) 10.2 7.885 0.541 91.2 (— 0.2) 7.6 11.270 0.500
9 51.2 (— 43.4) 39.6 8.135 0.220 84.0 (— 7.4) 13.0 11.505 0.422
10 89.0 (— 5.6) 10.8 7.878 0.540 85.8 (— 5.6) 11.8 11.714 0.447

we proposed methods for integrating the state of the PSRs
corresponding to each pedestrian for handling the change in
the number of pedestrians between training and testing.

The experiments conducted showed the effectiveness of
the proposed model. In addition, we confirmed that the
second version of the proposed model, which uses an
occupancy-map-based state integration, is more stable in the
situation where the number of pedestrians differs between
training and testing.

In future work, the two types of state integration methods
proposed in this paper have not yet been fully discussed;
further experiments are needed to clarify in detail the causes
of the differences between the two methods. For the occu-
pancy map-based method, further experiments are needed
to clarify the relationship between parameters such as the
number of grids and the performance change. In addition,
we will consider the more effective model and the learning
process for a real-world scenario. The learning costs and
exploration processes are critical problems in real-world deep
RL tasks. If a robot can learn in the real world directly,
the trained system can perform better in actual environments
than in simulated environments. However, the robot would be
required to repeat its interactions with the environment and
learn from numerous success and failure patterns, which is
difficult to achieve practically. Thus, a more efficient learning
process is required to overcome these problems.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant Number JP20H00230.

REFERENCES

[1] M. Everett, Y. F. Chen, and J. P. How, “Motion Planning among
Dynamic, Decision-Making Agents with Deep Reinforcement Learn-
ing,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 3052-3059, 2018.

[2] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in Proceedings - IEEE International Conference on
Robotics and Automation, vol. 2019-May, pp. 6015-6022, 2019.

[3] Y. Chen, C. Liu, B. E. Shi, and M. Liu, “Robot Navigation in
Crowds by Graph Convolutional Networks with Attention Learned
from Human Gaze,” IEEE Robotics and Automation Letters, vol. 5,
pp. 2754-2761, apr 2020.

[4] C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational graph
learning for crowd navigation,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2020.

[5] L. Lucia, D. Daniel, C. Gianluca, S. Roland, and D. Renaud, “Robot
Navigation in Crowded Environments Using Deep Reinforcement
Learning,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020.

[6] S. Singh, M. James, and M. Rudary, “Predictive State Representations:
A New Theory for Modeling Dynamical Systems,” in 20th The
Conference on Uncertainty in Artificial Intelligence (UAI), 2004.

[7] B. Boots, A. Gretton, and G. J. Gordon, “Hilbert space embeddings
of predictive state representations,” in 29th Conference on Uncertainty
in Artificial Intelligence (UAI), pp. 92-101, 2013.

[8] A. Hefny, C. Downey, and G. J. Gordon, “Supervised learning for
dynamical system learning,” in Advances in Neural Information Pro-
cessing Systems, vol. 2015-Janua, pp. 1963-1971, 2015.

[9]1 A. Hefny, C. Downey, and G. Gordon, “An efficient, expressive and
local minima-free method for learning controlled dynamical systems,”
in 32nd AAAI Conference on Artificial Intelligence (AAAI), pp. 3191—
3198, feb 2018.

[10] A. Venkatraman, N. Rhinehart, W. Sun, L. Pinto, M. Hebert, B. Boots,
K. M. Kitani, and J. A. Bagnell, “Predictive-state decoders: Encoding
the future into recurrent networks,” in Advances in Neural Information
Processing Systems, vol. 2017-Decem, pp. 11731184, Neural infor-
mation processing systems foundation, 2017.

[11] A. Hefny, Z. Marinho, W. Sun, S. S. Srinivasa, and G. Gordon,
“Recurrent predictive state policy networks,” in 35th International
Conference on Machine Learning, ICML 2018, vol. 5, pp. 3104-3119,
2018.

[12] E. Meisner, S. Das, V. Isler, J. Trinkle, S. Sabanovi¢, and L. R.
Caporael, “Predictive state representations for grounding human-robot
communication,” in Proceedings - IEEE International Conference on
Robotics and Automation, pp. 178-185, 2010.

[13] J. A. Stork, C. H. Ek, Y. Bekiroglu, and D. Kragic, “Learning
Predictive State Representation for in-hand manipulation,” in Proceed-
ings - IEEE International Conference on Robotics and Automation,
vol. 2015-June, pp. 3207-3214, Institute of Electrical and Electronics
Engineers Inc., jun 2015.

[14] K. Fukumizu, L. Song, and A. Gretton, “Kernel Bayes’ rule: Bayesian
inference with positive definite kernels,” Journal of Machine Learning
Research, vol. 14, pp. 3753-3783, 2013.

[15] S. Remes, M. Heinonen, and S. Kaski, “Non-stationary spectral
kernels,” in Advances in Neural Information Processing Systems,
vol. 2017-Decem, pp. 4643-4652, 2017.

[16] J. F. Ton, S. Flaxman, D. Sejdinovic, and S. Bhatt, “Spatial mapping
with Gaussian processes and nonstationary Fourier features,” Spatial
Statistics, vol. 28, pp. 59-78, dec 2018.

[17] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-
STGCNN: A Social Spatio-Temporal Graph Convolutional Neural
Network for Human Trajectory Prediction,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 14412-14420, 2020.

[18] J. Oh, S. Singh, and H. Lee, “Value prediction network,” in Ad-
vances in Neural Information Processing Systems, vol. 2017-Decem,
pp. 6119-6129, 2017.

[19] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal

n-body collision avoidance,” in Springer Tracts in Advanced Robotics,

vol. 70, pp. 3-19, 2011.

I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration

via bootstrapped DQN,” in Advances in Neural Information Processing

Systems, pp. 4033-4041, 2016.

[21] J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. Dvornek, X. Pa-
pademetris, and J. S. Duncan, “AdaBelief optimizer: Adapting step-
sizes by the belief in observed gradients,” in Advances in Neural
Information Processing Systems, vol. 2020-Decem, 2020.

[20

