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Abstract— As global efforts to explore the Moon intensify,
the need for high-quality 3D lunar maps becomes increasingly
critical—particularly for long-distance missions such as NASA’s
Endurance mission concept, in which a rover aims to traverse
2,000 km across the South Pole—Aitken basin. Kaguya TC
(Terrain Camera) images, though globally available at 10
m/pixel, suffer from altitude inaccuracies caused by stereo
matching errors and JPEG-based compression artifacts. This
paper presents a method to improve the quality of 3D maps
generated from Kaguya TC images, focusing on mitigating the
effects of compression-induced noise in disparity maps. We
analyze the compression behavior of Kaguya TC imagery, and
identify systematic disparity noise patterns, especially in darker
regions. In this paper, we propose an approach to enhance 3D
map quality by reducing residual noise in disparity images
derived from compressed images. Our experimental results
show that the proposed approach effectively reduces elevation
noise, enhancing the safety and reliability of terrain data for
future lunar missions.

I. INTRODUCTION

Space agencies around the world are competing to achieve
successful missions on the Moon. China landed Chang’e on
the far side of the Moon, while Japan successfully landed
the SLIM mission—although it ran out of power due to the
lander’s orientation relative to the Sun. The U.S. is pursuing
the Artemis program to return humans to the Moon. The
first private spacecraft, Intuitive Machines’ Odysseus lander,
successfully landed and operated for several days. NASA is
also considering the Endurance mission to explore the lunar
south pole.

The Endurance rover would cover 2,000 km in the South
Pole-Aitken basin [1]. High-quality 3D maps are crucial for
its safe and successful journey. LRO’s Lunar Orbiter Laser
Altimeter (LOLA, 5 118 m/pixel) [2] and (JAXA) Kaguya’s
Terrain Camera (TC, 10 m/pixel) [3] [4] provide data for
these maps, though existing ones have limitations. LRO’s
maps are high-resolution mainly in polar regions, but high-
resolution mapping along Endurance’s path requires new data
collection. There’s a concern as LRO may not be operational
for the duration needed, due to constrains on original mission
timeline. Kaguya maps, while high-resolution on the surface,
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Fig. 1: Illustrative example of elevation error ( 20 m) in a
3D reconstruction derived from compressed stereo imagery
(left). The DEM generated from uncompressed imagery of
the same area (right) appears smooth.

have altitude inaccuracies from stereo matching and JPEG-
based compression.

To address the first issue (i.e. altitude inaccuracies from
stereo marching), we developed high-quality 3D lunar maps
from Kaguya’s 2D images [5] [6]. Progress includes a
Kaguya image selection system, TC camera model refine-
ment, and enhanced stereo matching, resulting in less noisy
3D maps than JAXA’s. Despite better quality, challenges
remain with Kaguya TC image compression affecting ele-
vation accuracy. Analysis shows compression added about
20 meters of elevation noise. Figure 1 generated from
compressed and uncompressed images of the same area; the
DEM (Digital Elevation Model) from the compressed image
exhibits a 20-meter elevation error. This poses high risks for



rover navigation due to potential underestimation of slope
steepness and impassible areas, etc.

To address compression noise removal, both traditional
signal processing techniques and more recent deep learn-
ing methods have been proposed. In signal processing ap-
proaches, Kamiya et al. developed a method to correct
low-frequency components, offering improvements but of-
ten compromising high-frequency details [8]. Singh et al.
proposed mitigating blocking artifacts in JPEG images by
modeling them as 2D step functions between neighboring
blocks and applying human visual system-based metrics [9].

Deep learning-based approaches for JPEG artifact reduc-
tion operate on fundamentally different principles, aiming
for more comprehensive quality restoration. Recent models
such as QGAC [14], FBCNN [16], and DDRM-JPEG [15]
leverage techniques like Diffusion Models (DM) and ad-
vanced Convolutional Neural Network (CNN) to effectively
reduce compression artifacts, particularly tested on ground-
level imagery. Quantitative evaluations underscore their suc-
cess, indicating that these state-of-the-art models can achieve
over a 10% improvement in standard image quality metrics
compared to traditional decompression methods [15].

These approaches are generally not suitable for precise 3D
reconstruction using satellite images, due to their coarse res-
olution compared to ground-level imagery. This coarse reso-
lution often violates the continuity assumption commonly
used in ground-based methods. While large craters may
satisfy this assumption, our areas of interest are relatively
flat regions—where landers are expected to touch down and
rovers will operate—in order to ensure their safety.

Most Kaguya TC images are compressed, but approx-
imately 5,000 remain uncompressed. These uncompressed
images are geographically diverse, covering regions from
the Moon’s South Pole to the North Pole. JAXA employs
32 different JPEG compression tables, selecting one for
each image—information that is publicly available in each
image’s metadata. Our proposed approach leverages these
compression tables. The initial idea was to generate 32
differently compressed versions of each uncompressed image
and estimate the residuals between the compressed and
uncompressed images using deep learning approaches. The
goal was for the models to learn and capture patterns specific
to JPEG compression artifacts. However, the residuals are
random, making accurate estimation extremely challenging.

Through evaluation of disparity images generated by
stereo matching, we observed that compressed stereo pairs
introduced high-frequency noise in the disparity maps,
whereas uncompressed pairs did not, as shown in Fig. 1.
Thus in this paper, we propose an approach to enhance
3D map quality by improving disparity images derived
from compressed inputs. We employ two deep learning
approaches: IGEV++ for stereo matching [17] and a con-
ditional diffusion model [7] for post-processing disparity
residuals. These methods are compared to determine which
more effectively estimates residuals in the disparity images.

Post-processing methods for disparity images, such as
PSMNet [10] and RAFT-Stereo [11], have been proposed;

however, they are designed to address typical matching
errors, not compression-induced noise. Thus to the best of
our knowledge, this is the first approach aimed at improving
disparity images affected by compression-induced errors.

Our paper is organized as follows. Section II discusses
JPEG compression in Kaguya TC images and describes our
approach to improve disparity images. Section III presents
the experimental results, and Section IV concludes the paper
with a summary and directions for future work.

I1. JPEG COMPRESSION ON KAGUYA TC IMAGES
AND IMPROVING DISPARITY IMAGES

In this section, we first provide an overview of Kaguya
TC images and examine how JPEG compression impacts
the quality of disparity images, followed by our approach
to enhance disparity accuracy.

A. Kaguya TC images and JPEG compression

The Terrain Camera (TC) onboard the SELenological
and ENgineering Explorer ’KAGUYA’ (SELENE) spacecraft
collected daytime stereo-pair imagery of the Moon from
November 2007 to June 2009. The TC consists of two one-
dimensional telescopes that captured images using a push-
broom scanning method. The nominal image resolution is
10 m/pixel, based on Kaguya’s standard orbital altitude of
100 km. Each telescope has 4,096 pixels, with data typically
acquired at 3,504 pixels, though 4,096 or 1,752 pixels were
occasionally used. TC operated in three observation modes:
(i) stereoscopic mode at high solar elevation angles, (ii)
monoscopic mode at lower solar elevation angles, and (iii)
Spectral Profiler (SP) support mode. During the mission,
Kaguya TC achieved stereo coverage of over 99% of the
lunar surface [13]. Images from the first observation mode
were used in this study. An example stereo pair is shown in
Fig. 2.

JAXA prepared 32 JPEG compression tables for Kaguya
TC images, of which 10 were used during the mission.
Among these, the most frequently used table is SF008S_A,
applied to approximately 56% of all images. Therefore, this
paper focuses on SFO08S_A, as shown in Table I. We do not
delve into the theoretical details of JPEG compression in this
paper; for a comprehensive explanation, please refer to [12].
Briefly, during the quantization step of JPEG compression,
high-frequency components are suppressed, leading to resid-
val loss—this is the primary source of compression-induced
error.

TABLE I: JPEG compression table SF008S_A. Left top is
for low frequency and bottom right is for high frequency.

Low <— High (frequency)

3 4 6 8 10
3 4 9 10 | 9
4 6 9 11 9
5 8 14 | 13 | 10

9 11 | 17 | 16 | 12
10 | 13 | 17 | 18 | 15
14 | 16 | 20 | 20 | 16
16 | 18 | 16 | 16 | 16
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Fig. 2: An stereo

example
TC1W2B0.01_01685N188E0047,
TC2W2B0-01_01685N185E0048).

pair (left:

right:

In [6], we demonstrated that our stereo matching algo-
rithm can achieve sub-meter elevation accuracy when using
uncompressed images. Based on the configuration of the TC
cameras, the theoretical limit is a disparity error of 0.03 pix-
els, corresponding to a terrain relief error of approximately
0.54 meters along the y-direction (the spacecraft’s flight
direction). In contrast, general stereo matching algorithms
typically yield a disparity error of around 0.3 pixels, resulting
in a terrain relief error of approximately 5.45 meters.

We investigated the impact of JPEG compression on the
accuracy of disparity estimation. Our analysis revealed that
disparity errors tend to increase in darker regions when using
compressed images. To further evaluate this, we scaled the
image DN (Digital Number, represented with 14-bit preci-
sion) values to various levels and applied JPEG compression
noise using the SFO08S_A table.

To obtain ground-truth disparity, we constructed stereo
pairs by shifting a TC image by 97 pixels along the y-
direction, resulting in a known ground-truth disparity of 97
pixels across the image. In our evaluation, we varied the
image mean scale from 1.0 to 0.75, 0.5, 0.25, 0.1, and 0.05.
For each scale, we computed disparity images from both
uncompressed and compressed stereo pairs. The difference
between the computed and ground-truth disparity was then
used to calculate error statistics. The results are summarized
in Table II. These results indicate that, even with varying im-
age scaling, disparity estimation using uncompressed images
maintains high accuracy, achieving a standard deviation of
approximately 0.01 pixels. In contrast, performance degrades
when using compressed images, particularly as DN values
decrease. Since our goal is to achieve sub-meter accuracy
in disparity estimation, this suggests the need to focus on
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Fig. 3: Illustrative comparison of disparity values from
compressed (orange) and uncompressed (blue) images.

improving performance in darker regions—specifically, areas
with DN values below 388.

B. Improve disparity images affected by compression-
induced errors

In this section, we present our approach to enhancing
disparity images derived from compressed stereo pairs in
darker regions. Figure 3 illustrates an example comparing
disparity values along the y-axis. The blue and orange dots
represent disparities from uncompressed and compressed
stereo pairs, respectively. This observation led us to hypothe-
size that disparity noise from compressed images may exhibit
patterns that can be mitigated, for instance, by removing
high-frequency components.

As a proof of concept, we employ two deep learning
methods: a conditional diffusion model (Palette) and a stereo
matching model IGEV++). Here is a brief explanation of
both approaches. Palette [7] is a conditional diffusion model
developed for high-quality image-to-image translation tasks
by learning to reverse a gradual noising process. It uses a U-
Net architecture trained to predict noise added to the image
at each timestep, and conditioning is done by concatenating
the input with the noisy image at each step. IGEV++ [17]
achieves state-of-the-art stereo matching by combining multi-
scale feature extraction with multi-range geometry encoding
volumes (MGEVs) for efficient disparity handling. It uses
a ConvGRU-based operator to iteratively refine disparities
and upsamples the final disparity map using context features.
IGEV++ is specifically designed for disparity estimation, and
therefore is expected to perform well. However, diffusion
models may also demonstrate competitive performance due
to their inherently high expressive power.

Both models take a stereo pair of compressed images
as input (or conditional data) and output the corresponding
disparity map. Initially, we attempted to train the models
directly using disparity maps from uncompressed images as
ground truth. However, training failed, likely due to the large
range and skewed distribution of disparity values, which
made diffusion model training challenging. To address this,
we analyzed the residuals between disparity maps generated
from compressed and uncompressed image pairs and found



TABLE II: We varied the image mean scale from 1.0 to 0.75, 0.5, 0.25, 0.1, and 0.05. For each scale, we computed
disparity images from both compressed and uncompressed stereo pairs. The difference between the computed and ground-

truth disparity was then used to calculate error statistics.

Image stats before compression | Disparity image (compressed) [pixel] | Disparity image (uncompressed) [pixel]
scale | mean [DN] std [DN] min max mean std min max mean std
0.05 77.634 14.903 0.015 | 0.690 | 0.010 0.095 0.018 | 0.029 | -0.002 0.013
0.10 155.268 29.806 0.014 | 0.778 | 0.001 0.060 0.004 | 0.025 | 0.000 0.013
0.25 388.170 74.515 0.042 | 0.360 | -0.006 0.031 0.037 | 0.069 | -0.003 0.015
0.50 776.340 149.030 0.048 | 0.322 | -0.005 0.023 0.007 | 0.080 | -0.000 0.016
0.75 1164.510 223.545 0.047 | 0.181 | -0.002 0.016 0.046 | 0.046 | -0.002 0.014
1.00 1552.680 298.060 | -0.031 | 0.208 | 0.002 0.017 0.063 | 0.056 | -0.002 0.015

that they follow a Gaussian distribution with zero mean
and unit standard deviation. Based on this observation, we
reformulated the problem to train the models to predict
these residuals instead. To facilitate residual learning, we
rectified the input stereo pairs of compressed images using
the associated disparity maps.

III. EXPERIMENTS

In this section, we present experimental results using
Kaguya TC images. To construct the dataset, we selected
approximately 70 stereo pairs from the pool of 5,000 un-
compressed images. The geographic coverage of these stereo
pairs spans latitudes from -70 degree to 70 degree, with
varying solar illumination conditions. For each stereo pair,
we generated compressed versions and computed disparity
maps for both the compressed and uncompressed image
pairs.

As shown in the previous section (Table II), the disparity
error for uncompressed images is extremely small. Therefore,
we treat the disparity maps derived from uncompressed im-
ages as ground truth in our evaluations. Each original image
has a resolution of 3208 x 4656 pixels, which we divided into
smaller patches of 256 x 256 pixels. This resulted in 4745
patches, of which 90% were used for training and 10% for
testing.

A. Comparison of Palette, IGEV++, and low pass filter

We first trained a conditional diffusion model (Palette)
and IGEV++ using the training data. For Palette, we used
the Python package from [18], with key hyperparameters
including a cosine scheduler with 2000 time steps and 1000
refinement steps. For IGEV++, we employed the official
implementation [19] with default settings. Additionally, we
implemented a low-pass filter (LPF) to investigate the nature
of noise in the disparity residuals. If the LPF produces
good results, it suggests that the disparity errors mainly
consist of high-frequency noise. However, if the LPF alone is
insufficient, it indicates the presence of more complex noise
components, which may require a data-driven approach (e.g.,
deep learning) for effective removal.

Figure 4 presents example visualizations from the test
dataset, including TC1 images from example rectified stereo
pairs, ground truth disparity residuals, estimated disparity
residuals using Palette, IGEV++, and LPF. We picked up
three examples from the test dataset, and stereo pair IDs are
166, 615, and 918. To implement LPF, we applied a Gaussian

low-pass filter with a sigma of 3.0 to the original disparity
images, then computed the residuals relative to the original
disparities. These results indicate that Palette estimated the
disparity residuals more accurately than IGEV++ and LPF.

Figure 5 shows 2D scatter plots with predictions on the
x-axis and ground truth values on the y-axis for stereo pair
ID 166. These results indicate that Palette achieves the best
performance, suggesting that the disparity noise consists not
only of high-frequency components but also of other types
of errors that Palette models effectively. IGEV++ shows the
poorest performance, possibly because it is designed for
larger disparity values and may have become trapped in a
local minimum.

We also computed the mean and standard deviation of
the errors, the correlation coefficient, and the coefficient
of determination between the estimated and ground truth
disparity residuals for four methods—no noise estimation
(i.e., the original disparity map from compressed images),
Palette, IGEV++, and LPF—as summarized in Table III for
the three example stereo pairs (IDs: 166, 615, and 918).
The results show that the original disparity maps derived
from compressed images have a standard deviation exceeding
0.06 pixels and a mean error of approximately 0.01 pixels,
corresponding to an elevation error of about 1.26 meters. In
contrast, the conditional diffusion model improves estimation
accuracy, achieving a best-case standard deviation of 0.033
pixels and a mean error of 0.007 pixels, resulting in an ele-
vation error of 0.54 meters. These findings demonstrate the
feasibility of our proposed approach for enhancing disparity
maps degraded by compression-induced noise.

Table IV presents the correlation coefficient and the coeffi-
cient of determination for the overall evaluation using Palette,
IGEV++, and LPE.

IV. CONCLUSIONS AND FUTURE WORK

We proposed the first approach specifically targeting the
improvement of disparity images affected by compression-
induced noise in Kaguya TC images. By leveraging deep
learning models, we demonstrate that it is possible to en-
hance 3D map quality despite the challenges posed by JPEG
compression artifacts.

Our future work includes evaluating our approach across a
range of mean DN values, as current testing has been limited
to a mean DN of 200. We also plan to assess the effectiveness
of our method using the remaining nine JPEG compression
tables provided by JAXA.



TABLE III: Evaluation of three example image sets using: (i) no noise estimation (i.e., the original disparity map generated
from compressed images), (ii) Palette, (iii) IGEV++, and (iv) LPE. r denotes the correlation coefficient, and > denotes the
coefficient of determination (R? score). r and r* values are not available for (i) no estimation, since the residual of the

disparity map is all 0. SD stands for standard deviation.

D (i) no estimation (ii) Palette (iii) IGEV++ (iv) LPF
mean SD r 2 mean SD r r? mean SD r r? mean SD r r”
166 | 0.008 | 0.069 | N/A | N/A | 0.007 | 0.033 | 0.929 | 0.844 | -0.002 | 0.067 | 0.253 0.063 0.006 | 0.065 | 0.493 | 0.186
615 | 0.015 | 0.072 | N/A | N/A | 0.002 | 0.056 | 0.728 | 0.500 0.015 0.071 | 0.215 | -0.009 | 0.014 | 0.068 | 0.440 | 0.130
918 | 0.013 | 0.063 | N/A | N/A | 0.006 | 0.040 | 0.866 | 0.715 | -0.007 | 0.062 | 0.167 0.015 0.013 | 0.064 | 0.454 | 0.174
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Fig. 4: Example visualizations from the test dataset include:
(a) TC1 images from three example rectified stereo pairs
(Stereo pair IDs: 166, 615, and 918 from left to right); (b)
ground truth disparity residuals corresponding to the stereo
pairs in (a); and (c—e) estimated disparity residuals produced
by Palette, IGEV++, and LPF

(c) LPF

Fig. 5: An example visualizations of 2D plots with the x-axis
representing predictions and the y-axis representing ground
truth (Stereo pair ID = 166).



TABLE 1IV: Overall evaluation of the following methods:
(i) using Palette, (ii) using IGEV++, and (iii) using LPF.
r denotes the correlation coefficient, and 2 denotes the
coefficient of determination.

r r2
(i) Palette | 0.778 | 0.487
(i) IGEV++ | 0.166 [ 0.017
(i) LPF | 0.463 | 0.193
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