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Abstract— This paper proposes a method for non-line-of-
sight (NLoS) position estimation utilizing wireless distance
sensors. Recently, the accuracy of wireless distance sensors
that use ultra-wideband (UWB) or ultrasonic technologies to
measure the distance between two sensor devices has increased
significantly. By placing these sensors in the environment,
it is possible to precisely determine the position of mobile
robots in indoor environments. Owing to reflections in the
environment, these sensors have a large measurement error in
NLoS conditions, limiting their applicability to environments
that satisfy the line-of-sight (LoS) condition. This study aims
to develop a stable method for estimating the position of mobile
robots in indoor environments, including NLoS conditions,
using wireless distance sensors. Experiments were conducted
in two real environments: one with obstacles in front of the
beacon and one with dynamic obstacles. In both cases, the
combining 2D-LiDAR and wireless distance sensors using the
proposed method considering NLOS was more accurate than
the method considering LoS only.

I. INTRODUCTION

Autonomous robot navigation requires a reliable position-
estimation method. The GPS can provide a highly accurate
location on a map in outdoor environments. However, GPS
signals cannot be acquired indoors owing to obstructions
created by roofs and walls.

One of the most popular position estimation methods
for indoor robots is the adaptive Monte Carlo localization
(AMCL) method, which compares the surrounding geometry
obtained from a 2D-LiDAR to a pre-constructed occupied
grid map. However, reliable location estimation becomes
challenging in environments with numerous simple or com-
plex shapes or shapes with similar characteristics. Addition-
ally, the estimation may fail because of the inconsistencies
between the map and the actual environment, such as those
occurring due to the movement of objects or the modification
of floor plans. Furthermore, it is difficult to return to the
correct position once the robot’s position has been incorrectly
estimated.

Recently, the accuracy of wireless distance sensors that use
ultra-wideband (UWB) or ultrasonic technologies to measure
the distance between two sensor devices has increased sig-
nificantly. By placing these sensors in the environment, it is
possible to precisely determine the position of mobile robots
in indoor environments.
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Fig. 1: Use of ceiling reflection. If there is an obstacle
between the two beacons to be measured, the reflection path
is mainly measured. In addition to the real coordinates, the
estimation uses the coordinates of the beacon specularly
reflected from the ceiling.

However, these sensors have a large measurement error
in NLoS (non-line-of-sight) condition due to reflections in
the environment, and thus the applicable environments are
limited which satisfies the LoS (line-of-sight) condition.

In this study, we propose a position estimation method
using wireless distance sensors that also considers the NLoS
condition. In the NLoS condition, wireless distance sensors
observe a large measurement error owing to reflections
in the environment. However, by considering the possible
reflection path and combining it with the AMCL method,
precise position estimation becomes possible even in NLoS
conditions. This paper presents the proposed method and
experimental results obtained using ultrasonic sensors in
complex environments.

II. RELATED WORK

In the context of simultaneous localization and mapping
(SLAM), robot pose estimation by combining 2D-LiDAR
and beacons is being investigated, particularly in featureless
tunnel and corridor environments where experiments have
been conducted [1][2].

Beacon-based methods are subject to errors due to signal
reflection and transmission when there are obstacles between
the measurement beacons (i.e., NLoS). Previous research
has addressed the identification and mitigation of NLoS
conditions [3]. Also, studies have been conducted on the use
of reflective paths due to interior walls [4][5]. These methods
also model the reflection path by considering a virtual beacon
as shown in Fig. 1.

In [4], position estimation with a single ultrasonic beacon
is proposed by capturing delayed waveform peaks due to
reflections as well as the direct path of ultrasonic waves.
However, the first peak must be caused by a direct path and
this method cannot be applied to environments where direct



waves do not reach. In [5], the position estimation using Time
Difference of Arrival (TDoA) by three or more beacons in
NLoS condition is proposed. However, identifying whether
the measured distance is due to direct or reflected paths is
time-consuming beacause all combinations of real and virtual
beacons must be examined.

This research aims to develop a position estimation
method for indoor robots utilizing reflected wave paths,
allowing the robot to operate in a stable manner even when
NLoS is caused by dynamic obstacles, such as pedestrians.

We utilize a Time of Arrival(ToA)-based ultrasonic beacon
as the wireless distance sensor and a particle filter for
a position estimation. Each particle identifies whether the
measured distance is caused by a direct or reflected path.
Therefore, the proposed method can be applied from a single
beacon and can be easily added to environments where
estimation using LiDAR is difficult.

III. HARDWARE

In this study, an ultrasonic beacon [6] manufactured by
Marvelmind, Inc., was used as a wireless distance sensor to
determine the distance from a known environmental point.
This ultrasonic beacon includes a beacon body capable of
transmitting and receiving ultrasonic waves as well as a
modem to control multiple beacons. The beacon is comprised
of eight different beacons with varying transmission frequen-
cies. Additionally, regardless of the beacon type, all beacons
can receive ultrasonic waves with varying frequencies.

Furthermore, we experimented with an inverse architecture
(IA) setup[6] where ultrasonic waves were transmitted from
a beacon placed in the environment and received by a beacon
mounted on the robot.

IV. MEASUREMENT ACCURACY IN LOS/NLOS
CONDITIONS

Experiments were conducted in a room with walls on
all four sides and obstacles between beacons to verify the
accuracy of the measurement distance under LoS and NLoS
conditions. The dimensions of the room were approximately
9m × 9m and the ceiling height hc = 3.49[m]. The trans-
mitting frequencies were fTX = 31kHz and 45kHz. The
transmitting beacon was mounted on the wall at a height
of hTX = 1.8m from the floor, while the receiving beacon
was placed at a height of hRX = 0.7m. The obstacles were
wooden walls (desks) with a height of hO = 1.82m.

We measured the distance between the transmitting and
receiving beacons when the receiving beacon was placed
1–8 m (1 m increments), away from the wall under three
conditions: 1⃝ no obstacle (LoS), 2⃝ obstacle at x = 1.0m
from the transmitting beacon (NLoS-1m), and 3⃝ obstacle
at x = 2.0m from the transmitting beacon (NLoS-2m). For
each condition, the distance was measured 1000 times, and
the average distance was calculated.

The results are shown as box plots and scatter plots in Fig.
3. For x = 1.0m in the NLoS-1m condition and x = 2.0m in
the NLoS-2m condition, measurements were taken as close
to the desk as possible. The theoretical values of the direct

(a) LoS. Blue arrows represent the distance in a straight
line, while red arrows represent the path for reflection by
the ceiling.

(b) NLoS-1m (c) NLoS-2m

Fig. 2: Experimental setup

distance d∗ and reflection distance from the ceiling dr,∗ are
also plotted.
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As a result, the direct distance between beacons can be
measured with high accuracy in an environment with no
obstacles (LoS). In an environment with obstacles (NLoS-
1m, NLoS-2m), the measured distance is greater and closer
to the ceiling reflection path than in the absence of obstacles.

In environments where the beacon is in contact with an
obstacle, such as during the 1-meter measurement at NLoS-
1m and the 2-meter measurement at NLoS-2m, the reflection
path from the ceiling is also blocked, resulting in sparse
measurements.

V. PROPOSED METHOD

The proposed method aims to achieve stable and precise
indoor position estimation by incorporating the likelihood
from wireless distance sensors under NLoS conditions into
the AMCL, which is widely used for indoor mobile robots.

A. Adaptive Monte-Carlo localization

AMCL [7] is a particle filter-based localization method.
The particle filter maintains a set of candidate points as a
set of particles and estimates position by repeating the steps
below:

• Prediction Step
Consider the odometry as a control signal ut, and
move each particle by sampling from the motion model
p(xt|ut, xt−1).

• Observation Step



Fig. 3: Measurement Experimental Results. Box-and-whisker and scatter plots are depicted. The horizontal axis is the
horizontal distance between receiving and transmitting beacons [m], and vertical axis is the measured value [m]. The blue
and red dotted lines are the theoretical values of the direct and ceiling reflection paths, respectively. The measured distances
considerably coincide in most conditions, and the box-and-whisker diagram is collapsed into a horizontal line.

The measurement model p(zt|xt,m) is used to calculate
the likelihood from the sensor signal, and each particle
is weighted.
The likelihood field model [7] is used in this study to
match the 2D-LiDAR and the environmental map.

• Resampling Step
New particles are distributed from the distribution of
weighted particles.

In this study, we add an observation step for the integration
of beacons using navigation2-amcl[8], a well-known imple-
mentation of the AMCL. For simplicity, random particle
injection and KLD sampling were not performed, and the
number of particles was kept constant.

B. Add likelihood based on beacon distance information

A measurement model was added in order to use the
distance measured by the beacon for the observation step
described in the previous section. The likelihood based on
beacon distance information was implemented using the
beam model [7].

• Distribution by measurement error
First, the ideal measurement distance z∗ is calculated
from the particle positions and beacon coordinates on
the map. The measurement noise is simulated by assum-
ing a normal distribution with standard deviation σ2

hit,
centered on z∗.

phit(zt|xt,m) = N (zt; z
∗
t , σ

2
hit) (3)

• Distribution by random measurements
Assume a uniform distribution over the observable
range as the distribution in case of a random obser-
vation. The maximum value of the sensor is simulated
as zmax.

prand(zt|xt,m) =

{
1

zmax
if 0 ≤ zt < zmax

0 otherwise
(4)

In this study, an observation model using beacons was
constructed by combining these weighted models. The model
was constructed by adding these weights, where whit +
wrand = 1.

p(zt|xt,m) = whit · phit + wrand · prand (5)

C. Use of ceiling reflection

As an algorithm that also utilizes the reflected path of the
ceiling of a beacon, we used a virtual beacon that is spec-
ularly reflected by the ceiling, as shown in Fig. 1. Because
there are two possible coordinates for one environmental bea-
con (real coordinates and specular reflection coordinates), the
coordinates to be adopted were determined using maximum
likelihood estimation based on the likelihood calculated by
the observation model in the previous section. This algorithm
is shown in Algorithm 1.

First, we compute the 1⃝direct distance z∗,dt from the
beacon on the map to the position of the particle, and the
2⃝reflection path distance z∗,rt obtained from the position mr

of the virtual beacon specularly reflected on the ceiling. For
each of these distances (z∗,dt , z∗,rt ) calculated from the map,
the actual observed value zt is placed into the beam model to
obtain the likelihood. Finally, the likelihoods obtained by the
1⃝ direct distance and the 2⃝ reflection path are compared,

and a larger likelihood is adopted.

D. Use of reflective pathways other than ceilings

In reality, the measured distance may not be the ceiling
reflection path at the time of the NLoS, and a large error due
to unexpected reflections may be added. Even so, because the
reflected path is measured, the measured distance is greater
than the actual direct distance from the environmental
beacon to the robot. As a result, even if measurements are
obtained as a result of unexpected reflections, this property
can be used to loosely constrain the robot.

When using the observation model (Algorithm 1), an
exception was made when the direct path calculated from all



Algorithm 1 Observation model

Require: zt: Measuring distance
Require: xt := (x, y, θ): State of one particle
Require: m := (mx,my,mz): Environment side beacon

coordinates
Require: hr: Height of robot side beacon
Require: hc: Ceiling height
Ensure: wt: Particle weight

1: function MEASUREMENT(zt, xt,m, hr, hc, wt)
2: z∗,dt ← |xt −m|
3: wd

t ← zhit · N (zt; z
d,∗
t , σ2

hit)
4: if zt < zmax then
5: wd

t ← wd
t + zrand · 1

zmax

6: end if
7: mr ← (mx,my, hc + (hc −mz))
8: z∗,rt ← |xt −m∗,r|
9: wr

t ← zhit · N (zt; z
∗,r
t , σ2

hit)
10: if zt < zmax then
11: wr

t ← wr
t + zrand · 1

zmax

12: end if
13: wt ← max(wd

t , w
r
t )

14: return wt

15: end function

particles in the current particle distribution Xt, the predicted
ceiling reflection values z∗,dt , z∗,rt is evidently far from the
observation zt.

∀xt ∈ Xt, |zt − z∗,dt (xt)| > σth ∧ |zt − z∗,rt (xt)| > σth (6)

In real-world experiments, when the distance between the
observation and σth = 1.5[m] or more, the observation is not
weighted by the observation model (Algorithm 1) because
it is considered that the observation is not caused by a
direct path or ceiling reflection path. Instead, at least the true
posture is considered to be inside the measurement distance.
We set the weights of particles outside the measurement
distance to zero, and loosely constrained the weights of
particles inside to be normalized.

VI. EXPERIMENTS

The robot equipped with the beacon navigated manually
along the path shown in Fig. 4a in two real environments:
one with obstacles in front of the beacon ( 1⃝) and one with
dynamic obstacles ( 2⃝). The data logs of various sensors
were obtained by manually running the robot along the path
shown in Fig. 4a. In this experiments, the visual odometry
using a 6D SLAM module (SiNGRAY AExlam80/T, HMS)
is used.

The results for these two environments are shown in Figs.
5-7 depicts how the direct path/ceiling reflection path is
discriminated for each particle during the observation update.
It can be observed that the particle distribution improved
with the addition of the beacon. Even when only the ceiling
reflection path is available in the environment because of
an obstacle (desk) (Fig.7a), the ceiling reflection path is

S

(a) Environmental map. Beacons are placed at a height of 1.8 m
in the four corners of the room (marked with a star). The beacons
are mounted on the robot at a height of 0.5 m. The robot manually
runs counterclockwise and clockwise from the starting point in the
lower left corner while collecting measurement data.

(b) 1⃝Obstacles. Obstacles
(1.8-meter-high desks marked
with orange circles) are placed
in front of transmission bea-
cons (red arrows).

(c) 2⃝People around the
robot. Two people walk in
front of the robot, while one
walks behind it.

Fig. 4: Experimental setup

correctly identified and used. Even in an environment with
dynamic obstacles and unstable beacon-based distance mea-
surement, the measured distance can be seen to differentiate
between the direct path, ceiling reflection path, and others.

A motion-capture camera was also installed in the en-
vironment to verify the accuracy of the estimation. There
were eight motion capture cameras installed at a height of
approximately 2.5 meters. We set up a 2 m x 2 m rectangle as
the robot’s running path, which was used to measure motion
capture.

Five estimation methods were compared: combining Li-
DAR(Section V-A), beacon (V-B), reflection (V-C), and
outlier methods (V-D). As in the previous experiment, the
robot was manually driven in two real environments: one
with obstacles in front of the beacon, and the other with
people around it.

The resulting positions obtained from the motion capture
camera were used as the ground truth, and the average error
for each combination of methods is shown in Table I. Error
transitions are shown in Fig. 8, and the respective estimations
are shown in Figs. 9-10.

As a result, the estimation method combining all meth-
ods (v) shows the highest performance when obstacles are
present. On the other hand, in the case where people walk
around the robot, estimation methods (iv) and (v) show the
highest performance, with similar values.

In contrast, estimation methods (ii) and (iii), which do
not consider outliers, exhibit large positioning errors. In
these methods, once a large measurement is taken for some
reason, such as multiple reflections, the estimated position
becomes inaccurate and varies significantly. Note that in
these experiments, when the outlier model was selected,
the rejection of loose constraints did not work effectively
because all particles were within the measured distance in



most cases.
These results suggest that the estimation method that

includes reflection paths is effective for estimating NLoS
signals caused by large obstacles, whereas the outlier method
may be effective for estimating NLoS signals caused by
people in the environment who appear suddenly.

The current method only considers ceiling reflections and
treats other reflections as outliers. Future work will include
the addition of other reflections, such as from walls and
floors, to make the method more accurate and robust. The
effectiveness of the loosely constrain in the outlier model
will also be further investigated.

VII. CONCLUSIONS

In this study, we propose a position estimation method
that combines a wireless range sensor and 2D-LiDAR. In
particular, to solve the NLoS problem of wireless range
sensors, which occurs in the presence of dynamic obstacles,
we propose a method that utilizes reflections from the ceiling
by arranging the sensors in an ingenious manner. We will
continue to conduct experiments in real environments to
develop an indoor location-estimation method that can deal
with dynamic obstacles.

(a) 2D-LiDAR only (b) Proposed method (2D-LiDAR
+ beacon)

Fig. 5: 1⃝Results when obstacles exist. Estimated positions
and particle distributions are measured at regular time inter-
vals.

(a) 2D-LiDAR only (b) Proposed method (2D-LiDAR
+ beacon)

Fig. 6: 2⃝Result when people walk around the robot.
Estimated positions and particle distributions are measured
at regular time intervals. Two people walked in front of the
robot and one walked behind it. A 2D-LiDAR measures 180◦

in front of the robot.
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télécommunications, vol. 65, no. 5-6, pp. 301–311, jun 2010. [Online].
Available: http://link.springer.com/10.1007/s12243-009-0124-z

[4] E. Dijk, K. van Berkel, R. Aarts, and E. van Loenen, “Ultrasonic 3d
position estimation using a single base station,” in Ambient Intelligence,
E. Aarts, R. W. Collier, E. van Loenen, and B. de Ruyter, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 133–148.

[5] K.-W. Kim, J. Kwon, C.-G. Lee, and J. Han, “Accurate indoor loca-
tion tracking exploiting ultrasonic reflections,” IEEE Sensors Journal,
vol. 16, no. 24, pp. 9075–9088, 2016.

[6] “Marvelmind robotics,” https://marvelmind.com/, accessed: 2022-07-
01.

[7] S. Thrun et al., Probabilistic Robotics (Intelligent Robotics and Au-
tonomous Agents). The MIT Press, 2005.

[8] S. Macenski et al., “The marathon 2: A navigation system,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020, pp. 2718–2725.



(i) LiDAR (ii) LiDAR
+Beacon

(iii) LiDAR
+Beacon +Reflection

(iv) LiDAR
+Beacon +Outlier

(v) LiDAR +Beacon
+Reflection +Outlier

1. Obstacles 0.250 0.818 2.864 0.294 0.137
2. People around the robot 0.311 0.971 2.032 0.162 0.160

TABLE I: Mean Position Estimation Error [m]. In methods (ii) and (iii), tracking is significantly off from the middle of
the operation, and the values are larger.

(a) 1⃝Error when obstacles exist. (b) 2⃝Error when people walk around the robot.

Fig. 8: Error per time. Only the Y-axis scale differs between the upper and lower figures.

(a) Ground truth (VICON) (b) 2D-LiDAR

(c) 2D-LiDAR + Beacon (d) 2D-LiDAR + Beacon + Re-
flection

(e) 2D-LiDAR + Beacon + Out-
lier

(f) 2D-LiDAR + Beacon + Re-
flection + Outlier

Fig. 9: 1⃝Result when obstacles exist. Estimated positions
and particle distributions are measured at regular time inter-
vals.

(a) Ground truth (VICON) (b) 2D-LiDAR

(c) 2D-LiDAR + Beacon (d) 2D-LiDAR + Beacon + Re-
flection

(e) 2D-LiDAR + Beacon + Out-
lier

(f) 2D-LiDAR + Beacon + Re-
flection + Outlier

Fig. 10: 2⃝Result when people walk around the robot.
Estimated positions and particle distributions are measured
at regular time intervals.


