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Abstract— This paper proposes a novel control method for
stable grasping using a multi-fingered hand-arm system with
soft hemispherical finger tips. The proposed method is simple
but easily achieves stable grasping of an arbitrary polyhe-
dral object using an arbitrary number of fingers. Firstly, we
formulate nonholonomic constraints between a multi-fingered
hand-arm system and an object constrained by rolling contact
with finger tips, and derive a condition for stable grasping by
stability analysis. A new index for evaluating the possibility of
stable grasping is proposed and efficient initial relative positions
between finger tips and the object for realizing stable grasping

are analyzed. The stability of the proposed system and the
validity of the index are verified through numerical simulations.

I. INTRODUCTION

A multi-fingered hand-arm system has been expected to

realize dexterous grasping like a human hand. Robots with

this system will be able to perform various manipulation

tasks even in an unstructured environment safely. Many

robotics systems and control methods for grasping an object

with an arbitrary shape have been proposed [1–5]. Especially,

dynamic grasping controllers using rolling constraints have

been reported [6–9]. However, these controllers are based on

inverse dynamics calculation, and object information such

as the mass and the shape of the object is required. In

contrast, there are several researches for dynamic grasping of

an unknown object using external sensing devices such as a

vision sensor and a tactile sensor [10–12]. In these methods,

sensing devices are costly and sensing error must be taken

into consideration though object information is not required

in advance.

On the other hand, Wimböck et al. [13] proposed a dy-

namic grasping method for an arbitrary object which requires

neither object information nor external sensors. However,

the stability of the system and the convergence performance

of the closed-loop dynamics were not discussed. Moreover,

rolling constraints between fingertips and the object surfaces

are not considered in their method. Similarly, Arimoto et al.

[14–17] have proposed a dynamic object grasping method

without object information and external sensors. The object
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Fig. 1. Multi-fingered hand-arm system

is limited to the one which consists of two flat and parallel

surfaces, though they verified the stability of the system and

the convergent performance of the closed-loop dynamics.

This paper proposes a novel control method for stable

grasping of an arbitrary polyhedral object using a multi-

fingered hand-arm system with soft hemispherical finger

tips. The proposed method is simple but easily achieves

stable grasping of an object without use of preliminary

information for a grasped object and any external sensors

using an arbitrary number of fingers. Firstly, we formulate

nonholonomic constraints between a multi-fingered hand-

arm system and an object constrained by rolling contact with

finger tips. The nonholonomic constraints for rolling contact

were proposed by Arimoto et al. [14–17] for an object with

two flat and parallel surfaces. We expand these constraints

for an object with an arbitrary polyhedral shape. The number

of fingers is also variable in our formulation. Secondly,

we derive Lagrange’s equation of motion for a hand-arm

system, and propose a new control signal which achieves

stable grasping. A new index for evaluating the possibility

of stable grasping is proposed and efficient initial relative

positions between finger tips and an object for realizing

stable grasping are analyzed. Using this index, it is clarified

that appropriate initial positions of finger tips depend on the

shape of the object and the ratio of the size of the object

and the radius of the finger tip. The stability of the proposed

system and the validity of the index are verified through

numerical simulations.
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II. A MULTI FINGERED HAND ARM SYSTEM

In this section, we define a model of a hand-arm system

composed of an arm and a multi-fingered hand. An example

of a multi-fingered hand-arm system treated here is illus-

trated in Fig. 1. An object to be grasped is an arbitrary

polyhedral object whose surfaces touched by finger tips are

flat. All finger tips maintain rolling contact with the object

surfaces, and do not slip and detach from the surfaces during

movement of the tips. Assume that fingertips roll within the

ranges of hemisphere surfaces, and they don’t deviate from

each contact surface. Note that the gravity effect is ignored in

this paper in order to have a physical insight into analyzing

physical interaction and stability of the system. As shown

in Fig. 1, O denotes the origin of Cartesian coordinates.

x0i ∈ R
3 is the center of each contact area. Hereafter, the

subscript of i refers to the ith finger in all equations. The

degrees of freedom of the arm and the ith finger are Na

and Ni, respectively. The joint angle of the arm is expressed

by qa ∈ R
Na . Similarly, the joint angle of the ith finger

is expressed by q0i ∈ R
Ni . q denotes the joint angles of

the arm and all the fingers
(

= (qa, q01, q02, ..., q0N )
T
)

. N

is the number of the fingers. As shown in Fig. 2, Oc.m.

denotes the center of the object mass and the origin of local

coordinates. Its position in Cartesian coordinates is expressed

as x = (x, y, z)
T
∈ R

3. Instantaneous rotational axis of the

object at Oc.m. is expressed by ω. The orientation angular

velocities around each axis of Cartesian coordinates x, y, z

are expressed as ωx, ωy, ωz respectively.

A. Constraints

3-dimentional rolling constraints with area contacts are

modeled here. The orientation of the object in Cartesian

coordinates can be expressed by the rotational matrix R such

that

Rob = (rX , rY , rZ) ∈ SO (3) , (1)

where rX , rY , rZ ∈ R
3 are mutually orthonormal vectors

on the object frame. It is known that this rotational matrix

is one of the members of the group SO(3). In addition to

this, we define contact frames at the center of each contact

area as follows:

RobRCi = (CiX ,CiY ,CiZ) , (2)

where RCi is the rotational matrix between the object frame

to the contact frames. Now, we consider the velocity of the

center of the contact area vi must satisfy

vi = ∆ri

(

ĊiY − ωi ×CiY

)

, (3)

where ωi ∈ R
3 is the orientation angular velocity vectors for

each robotic finger on the contact frames, ri is the radius of

each finger tip, and ∆ri are the distance between the center

of the finger tips and the contact surfaces (see Fig. 2). vi

is on the tangential plane at the center of the contact area

(now, they are surfaces of the object). The rolling constraints
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Fig. 2. Contact model at the center of the contact area

are expressed such that the velocity of the center of the

contact area on the finger tip, given as (3), should equal

to the velocity of the center of the contact area on the object

surface

∆riC
T
iX

(

ĊiY − ωi ×CiY

)

= Ẋi (4)

∆riC
T
iZ

(

ĊiY − ωi ×CiY

)

= Żi, (5)

where

Xi = −C⊤

iX(x− x0i) (6)

Zi = −C⊤

iZ(x− x0i). (7)

Equations (4) and (5) denote nonholonomic rolling con-

straints on the object surfaces. These constrains are of linear

with respect to each velocity vector, and thereby they can be

expressed as Pfaffian constraints as follows:

Xiqq̇ +Xixẋ+X iωω = 0 (8)

Ziq q̇ +Zixẋ+Ziωω = 0, (9)

where


















Xiq = ∆riC
T
iZJΩi −CT

iXJ0i

Xix = CT
iX

Xiω = {CiX × (x− x0i)}
T −∆riC

T
iZ

Ziq = −∆riC
T
iXJΩi −CT

iZJ0i

Zix = CT
iZ

Ziω = {CiZ × (x− x0i)}
T
+∆riC

T
iX ,

(10)

and ω = (ωx, ωy, ωz)
T

∈ R
3 is the angular velocity

vector for the instantaneous rotational axis of the object.

JΩi
∈ R

3×(Na+
∑

N

i=1
Ni) is the Jacobian matrix for the

orientation angular velocities of the finger tips with respect
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to the joint angular velocity q̇ ∈ R
Na+

∑
N

i=1
Ni . J0i ∈

R
3×(Na+

∑
N

i=1
Ni) is the Jacobian matrix for the center of

the finger tip x0i with respect to the joint angle, respectively.

B. Contact Model of Soft Finger-Tip

In this paper, the physical relationship between the de-

formation of the finger tip at the center of the contact area

and its reproducing force is given on the basis of lumped-

parameterized model proposed by Arimoto et al [14]. The

reproducing force f (∆r) in the normal direction to the

object surface at the center of the contact area is given as

follows:
[

fi = f̄i + ξi
d
dt
(ri −∆ri)

f̄i = k(ri −∆ri)
2,

(11)

where k is a positive stiffness constant which depends on the

material of the finger tip. In the second term of the right-

hand side of the upper equation of (11), ξi (∆ri) is a positive

scalar function with respect to ∆ri, and thereby the viscous

force increases according to the expansion of the contact

area.

C. Overall Dynamics

The total kinetic energy for the overall system can be

described as follows:

K =
1

2
q̇THq̇ +

1

2
ẋTMẋ+

1

2
ωTIω, (12)

where H ∈ R
(Na+

∑
N

i=1
Ni)×(Na+

∑
N

i=1
Ni) is the inertia

matrix for the arm and the fingers, M = diag (m,m,m)
is the mass of the object, I = RĪRT and Ī ∈ R

3×3 are

the inertia tensors for the object represented by the principal

axes of inertia. On the other hand, the total potential energy

for the overall system is given as follows:

P =

N
∑

i=1

P (∆ri) =

N
∑

i=1

∫ ri−∆ri

0

f̄i (∆ri) dζ, (13)

where P (∆ri) is the elastic potential energy for each finger

generated by the deformation of the finger tip. Hence,

Lagrange’s equation of motion is expressed by applying the

variational principle as follows:

For the multi-fingered hand-arm system:

H (q) q̈ +

{

1

2
Ḣ (q) + S (q, q̇)

}

q̇

+

N
∑

i=1

(

JT
0iCiY fi +XT

iqλiX +ZT
iqλiZ

)

= u, (14)

For the object:

Mẍ+

N
∑

i=1

(

−fiCiY +XT
ixλiX +ZT

ixλiZ

)

= 0 (15)

Iω̇ +

{

1

2
İ + S

}

ω −

N
∑

i=1

{CiY × (x− x0i)}fi

+

N
∑

i=1

(

XT
iωλiX +ZT

iωλiZ

)

= 0, (16)

where S (q, q̇) is skew-symmetric matrix, u is a vector of

the input torque. In addition, λiX and λiZ denote Lagrange’s

multipliers.

III. CONTROL INPUT

Tahara et al. [17] proposed a simple control method of a

triple robotic fingers system for stable grasping. We propose

a new control method based on Tahara’s method for a multi

fingered hand-arm system. This control signal is designed so

that the center of each finger tip approaches each other. The

control signal is given as follows:

u =
fd

∑N
i=1 ri

N
∑

j=1

J0j(xd − x0j)−Cq̇ (17)

xd =
1

N

N
∑

i=1

x0i, (18)

where C ∈ R
(Na+

∑
N

i=1
Ni)×(Na+

∑
N

i=1
Ni) > 0 is a diagonal

positive definite matrix that expresses the damping gain for

each finger, and fd is the nominal desired grasping force.

Now, an output vector of overall system is given as follows:

Λ̇ = (q̇, ẋ,ω)
T
. (19)

By substituting (17) into (14) and taking a sum of inner

product of (19) and closed loop dynamics expressed by (14),

(15) and (16), we obtain

d

dt
E= −q̇TCq̇ −

N
∑

i=1

ξ∆ṙ2i ≤ 0 (20)

E= K + V +∆P ≥ 0 (21)

K=
1

2
q̇THq̇ +

1

2
ẋTMẋ+

1

2
ωTIω (22)

V =
A

2

{

(x01 − x02)
2
+ (x02 − x03)

2

+... +(x0N − x01)
2
}

(23)

∆P =

N
∑

i=1

∫ δri

0

{

f̄i (∆rdi + φ)− f̄i (∆rdi)
}

dφ, (24)

where

δri = ∆rdi −∆ri (25)

A =
fd

N
(

∑N
i=1 ri

) . (26)

∆rdi is an initial value of ∆ri. V plays a roll of an artificial

potential energy arisen from the control input. Equation (21)

is evident since K , V and ∆P are positive as far as 0 ≤
∆rdi − δri < ri. In addition, Ė ≤ 0 during movement.

Equations (20) and (21) yield

∫

∞

0

(

q̇TCq̇ +

N
∑

i=1

ξ∆ṙ2i

)

dt

≤ E (0)− E (t) ≤ E (0) , (27)

Equation (27) shows that the joint angular velocity q̇ (t) is

squared integrable over time t ∈ [0,∞). It shows that q̇(t) ∈
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L2(0,∞). Considering the constraints shown by (4) and (5),

it is clear that ẋ ∈ L2(0,∞) and ω ∈ L2(0,∞). Thereby,

the output of the overall system Λ̇(t) is uniformly continuous

since it is shown that Λ̇ → 0 and Λ̈ → 0 when t → ∞
[15]. Therefore, it is obvious that the sum of the external

force applied to the finger system and the object ∆λ∞ is

converged to zero.

∆λ∞ = (∆λq,∆λx,∆λω) → 0 (28)

where

∆λq =

N
∑

i=1

(

JT
0iCiY fi +XT

iqλiX +ZT
iqλiZ

)

− u (29)

∆λx=

N
∑

i=1

(

−fiCiY +XT
ixλiX +ZT

ixλiZ

)

(30)

∆λω =−

N
∑

i=1

{CiY × (x− x0i)}fi

+

N
∑

i=1

(

XT
iωλiX +ZT

iωλiZ

)

. (31)

As a consequence, it is shown the dynamic force/torque

equibilium condition for immobilization of the object is

satisfied since each external force and each velocity become

zero. In other words, the stability of the overall systems is

verified. However, it is necessary to consider the stability

from physical perspective since the stability is analyzed only

from a mathmatical viewpoint. There are some cases that one

of the centers of the contact areas is outside of the object

surfaces at the final state. Therefore, there is a requirement

to specify the shape of the object to argue the stability from

physical perspective. Moreover we argue a final state of the

overall system mainly, because an overall movement depends

on each damping gain and initial contact position but it is

not depended on the final state of the system. Thereby in

this paper, we focus on a final state of the overall system

as the initial step of convergence analysis. Of course, it is

important to consider the convergence of overall movement

and it is one of our next works.

In the next section, as an example, we introduce the

condition for an object with an arbitrary polygonal shape.

IV. SPECIFIC STUDY

In this section, the condition for stable grasping of an

arbitrary polyhedral object is shown. In addition, an example

of the condition for a triangle pole is introduced.

The final positions of the finger tips are obtained when

E is minimized. On the other hand, the positions of the

finger tips when E is minimized (= Emin) coincide with the

positions of the finger tips when V is minimized (= Vmin).
Therefore, we derive the closed loop dynamics shown in (14)

to (16) and V in (23) for an arbitrary polyhedral object.

For the multi-fingered hand-arm system:

Hq̈+

{

1

2
Ḣ + S +C

}

q̇

+
N
∑

i=1

(

ŃZiJ
T
0i −∆riλiZ cos θsiJ

T
Ωi

)

rX

+

N
∑

i=1

(

∆riλiXJT
Ωi − λiZJ

T
0i

)

rY

+

N
∑

i=1

(

−NZiJ
T
0i −∆riλiZ sin θsiJ

T
Ωi

)

rZ

−A

N
∑

i=1











N
∑

j=1

ŃWj −NŃWi



JT
0i







rX

−A

N
∑

i=1











N
∑

j=1

Zj −NZi



JT
0i







rY

−A

N
∑

i=1











N
∑

j=1

NWj −NNWi



JT
0i







rZ

= 0, (32)

For the object:

Mẍ+

N
∑

i=1

(

−ŃZirX + λiZrY +NZirZ

)

= 0 (33)

Iω̇+

{

1

2
İ + S

}

ω +

N
∑

i=1

(

−NY iλiZ − ŃXiZi

)

rX

+

N
∑

i=1

(fiXi + λiXYi) rY

+

N
∑

i=1

(

−ŃY iλiZ +NXiZi

)

rZ = 0, (34)

where
















































θ1 = 0

θi = cos−1
(

CT
(i−1)Y CiY

)

(i = 2, 3, ..., N)

θsi =
∑i

h=1 θh
RCi = R−jθsiR−iπ

2

Di = Yi +∆ri
NWi = Xi sin θsi +Di cos θsi
ŃWi = Xi cos θsi −Di sin θsi
NXi = fi sin θsi + λiX cos θsi
ŃXi = fi cos θsi − λiX sin θsi
NY i = Yi cos θsi +Xi sin θsi
ŃY i = Yi sin θsi −Xi cos θsi
NZi = fi cos θsi + λiX sin θsi
ŃZi = fi sin θsi − λiX cos θsi,

(35)

where Yi is the distance from the center of the object mass

Oc.m. to the surface. From (32), (33) and (34), the scalar

function V is given as follows:

2267



3X

1Y

z

x
1X

3Y

2Y

y

x

x

y

1tθ

3θ

2X

x

y3tθ

2tθ

Fig. 3. Cross-section view of polygonal column

V = A
[(

X2
1 +X2

2 + ...+X2
N

)

+
(

D2
1 +D2

2 + ...+D2
N

)

−{(D1X2 −X1D2) sin θt2 + (D2X3 −X2D3) sin θt3

+...+ (DNX1 −XND1) sin θt1}

− {(X1X2 +D1D2) cos θt2 + (X2X3 +D2D3) cos θt3

+...+ (XNX1 +DND1) cos θt1}]

+
A

2

{

(Z1 − Z2)
2
+ (Z2 − Z3)

2

+... +(ZN − Z1)
2
}

, (36)

where

θti = θsi − θs(i−1) (i �= 1) (37)

θti = θsi − θsN (i = 1). (38)

θti is the external angle of the polygon parallel to the base

of the object (see Fig. 3). One of the prerequisite for the

minimum value of V is

Z1 = Z2 = ... = ZN . (39)

In the case that the grasped object has arbitrary polyhedral

shape, Xi can be considered as an index for evaluating the

stability of the system from the physical perspective. In fact,

stable grasping is realized if Xi is inside of each contact

surface when V is minimized to Vmin, that is to say, the

final state of the system is stable in the physical viewpoint.

Equation (36) has three parameters Xi, Di and θti. As an

example, we show the relation between Xi and θti in Table I

and the relation between Xi and Di for Vmin in the case that

the object is a triangle pole, where the size of the triangle

pole is normalized by the cross-section area S. Table II shows

the relation between Xi and the radius of each finger tip ri
for Vmin in order to show the relation between Xi and Di for

Vmin. In Table I and II, “IN” (see Fig. 4) means a case of

success in which all the centers of the contact areas are inside

of the object surface at the final state, and “OUT” (see Fig.

5) means a case of failure in which at least one of the centers

TABLE I

RELATIONSHIP BETWEEN θti AND Xi

θt1[rad] θt2[rad] θt3[rad] X1[m] X2[m] X3[m]

A 2.84 2.84 0.60 0.00 -0.0601 0.0601 IN
B 2.54 2.54 1.20 0.00 -0.0122 0.0122 IN
C 2.24 2.24 1.80 0.00 -0.0094 0.0094 IN
D 1.94 1.94 2.40 0.00 0.0190 -0.0190 IN
E 1.64 1.64 3.00 0.00 0.1137 -0.1137 OUT

(rj = 0.03 [m] ,∆rmin = 0.02 [m] , S = 6.38 × 103
[

m2
]

)

TABLE II

RELATIONSHIP BETWEEN ri AND Xi

r[m] ∆rmin[m] X1[m] X2[m] X3[m]

F 0.030 0.020 0.00 0.0504 -0.0504 IN
G 0.050 0.040 0.00 0.0605 -0.0605 IN
H 0.070 0.060 0.00 0.0705 -0.0705 OUT

(

(θt1, θt2, θt3) = (1.79, 1.79, 2.70) [rad], S = 6.38× 103
[

m2
])

C

A

F

Fig. 4. Sample case of “IN” as shown in Table I (A, C) and II (F). IN :
The case of success in which all the centers of the contact areas are inside
of the object surfaces at the final state (V = Vmin)

E H

Fig. 5. Sample case of “OUT” as shown in Table I (E) and II (H). OUT :
The case of failure in which at least one of the centers of the contact areas
is outside of the object surfaces at the final state (V = Vmin)

of the contact areas is outside of the object surfaces at the

final state. Table I and II show that the shape of the grasped

object and the radius of each finger tip determine whether a

stable grasping is realized or not at the final state. From these

considerations, we can say that initial positions of the finger

tips are valid for stable grasping if the initial positions are

close to the position obtained when V is minimized to Vmin.

Therefore, Vmin, the minimum value of the scalar function

V , can be used as an index for evaluating the possibility of

stable grasping.

V. NUMERICAL SIMULATION

We conduct numerical simulations for verifying the pro-

posed approach. The parameters of the triple-fingered hand-

arm system and the object in numerical simulation are shown

2268



TABLE III

PHYSICAL PARAMETERS

Triple-fingered hand-arm system

1st link length la1 1.300[m]

2nd link length la2 1.000[m]

3rd link length la3 0.175[m]

1st link length li1 0.300[m]

2nd link length li2 0.200[m]

1st mass ma1 1.300[kg] 1st mass center lga1 0.650[m]

2nd mass ma2 1.000[kg] 2nd mass center lga2 0.500[m]

3rd mass ma3 0.400[kg] 3rd mass center lga3 0.0875[m]

1st mass mi1 0.250[m] 1st mass center lgi1 0.150[m]

2nd mass mi2 0.150[m] 2nd mass center lgi2 0.100[m]

1st Inertia Ia1 diag(7.453, 7.453, 0.260)×10−1[kg·m2]
2nd Inertia Ia2 diag(3.397, 3.397, 0.128)×10−1[kg·m2]
3rd Inertia Ia3 diag(0.291, 0.291, 0.500)×10−1[kg·m2]
1st Inertia Ii1 diag(7.725, 7.725, 0.450)×10−3[kg·m2]
2nd Inertia Ii2 diag(2.060, 2.060, 0.120)×10−3[kg·m2]
Radius of fingertip ri 0.070[m]

Stiffness coefficient ki 1.000×105[N/m2]
Damping function ξi 1.000×

(

r2i −∆r2i
)

π[Ns/m2]

Object

Mass m 0.037[kg]

(Y1, Y2, Y3) (0.092, 0.048, 0.048)[m]

(θt1, θt2, θt3) (1.833, 1.833, 2.618)[rad]

Inertia I diag (1.273, 0.193, 1.148) × 10−3[kg ·m2]

TABLE IV

DESIRED GRASPING FORCE AND GAINS

fd 1.0[N]
Ca diag(3.080, 2.065, 2.483, 0.768, 0.487)×10−2[Ns·m/rad]

Ci diag(0.164, 0.177, 0.064)×10−2[Ns·m/rad]

TABLE V

INITIAL CONDITION

q̇ 0[rad/s]

qa (−0.262,−1.571, 2.094, 0.785, 0.000)T [rad]

q01 (0.000,−0.663, 1.934)T × 10−2[rad]

q02 (−0.262,−0.705, 2.185)T × 10−2[rad]

q03 (0.262,−0.705, 2.185)T × 10−2[rad]
ẋ 0[m/s]

x (0.000, 0.600, 0.800)T [m]
ω 0[rad/s]

R





1 0 0
0 1 0
0 0 1





in Table III. Table IV and V show the desired grasping

force and gains, and the initial condition, respectively. The

results of the grasping simulation are depicted in Figs. 6–

10. From Fig. 6 which indicates Xi and Zi, we can see

that Xi converges to which V satisfies Vmin, and thus, the

condition of (39) is satisfied. In addition, Xi and Zi converge

to the values which satisfy the conditions for Vmin. From

these results, we can conclude that the analysis of Vmin

is useful and it can be regarded as one of the index for

evaluating whether stable grasping is realized or not. This is

also effective for evaluating the initial positions of each finger

tips. Figures 7 and 8 show the elements of ∆λ∞ converges

to zero. It indicates that the sum of external force applied

to the system and the object converges to zero. The results

illustrate that the dynamic force/torque equibilium condition

for immobilization of the object is satisfied. Figures 9 and

0.05

Z

-0.01

0

0.01

}É1

-0.09

-0.08

-0.07

-0.06

0 5 10 15

}É1

fromV3

0.06

0.07

0.08

0.09

}É1

fromV2

2X

min2 for  VX

1X

min1 for  VX

3X

min3 for  VX

X
i 

[m
]

Time[s]

0.02

0.03

0.04

0 5 10 15

Z1

Z2

Z3

Time[s]

Z
i 

[m
] 1Z

2Z

3Z

Fig. 6. History of Xi reach to Xi for Vmin and history of Zi satisfies
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10 show q̇, ẋ and ω and we can confirm that the velocities

of the overall system converge to zero.

VI. CONCLUSION

This paper presented the novel stable grasping method

for an arbitrary polyhedral object by a multi-fingered hand-

arm system. Firstly, the nonholonomic constraints of rolling

contact were formulated, and the conditions to realize the

stable grasping was derived from the stability analysis of

the overall system. Additionally, a new index obtained by

the scalar function Vmin was proposed for evaluating the

possibility of stable grasping. This possibility depends only
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Fig. 9. History of joint angler velocity of arm and each finger

-0.1

-0.05

0

0.05

0.1

0 5 10 15

pos_v

pos_v

pos_v

-30

-15

0

15

30

0 5 10 15

ori_ve

ori_ve

ori_ve

V
el

o
ci

ty
 [

m
/s

]

Time[s]

x&
y&

z&

A
n

g
u

la
r 

V
el

o
ci

ty
 [

ra
d

/s
]

Time[s]

xω

yω

zω

Time[s]

Fig. 10. History of translational and rotational velocity of grasped object

on the shape of potential function V , and it does not

depend on initial contact positions and soft finger contact

model. The usefulness of the proposed index was verified

through numerical simulations. This means that the proposed

method realizes stable grasping regardless of any external

sensing and that the preshaping of the hand-arm system

for approaching to the object is important to realize stable

grasping.

Currently, the position and orientation of the object are not

specified explicitly. However, it would be easily possible to

control the position and orientation of the grasped object by

referring to the method proposed by Tahara et al. [17] and

Bae et al. [18]. In the future works, we would like to perform

some experiments to verify the usefulness of our proposed

method. Furthermore, we will expand the proposed control

scheme for an object with curved surfaces.
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[13] T. Wimböck, C. Ott, and G. Hirzinger, “Passivity-based Object-Level
Impedance Control for a Multifingered Hand,” Proc. of the 2006

IEEE/RSJ on Intelligent Robots and Systems, pp. 4621–4627, Beijing,
Chine, 2006.

[14] S. Arimoto, P.T.A. Nguyen, H.-Y. Han and Z. Doulgeri, “Dynamics
and control of a set of dual fingers with soft tips,” Robotica, vol. 18,
no. 1, pp. 71–80, 2000.

[15] S. Arimoto, “A differential-geometric approach for 2-D and 3-D object
grasping and manipulation,” Annual Review in Control, Vol. 31, pp.
189–209, 2007.

[16] M. Yoshida, S. Arimoto and J.-H. Bae, “Blind grasp and manipulation
of a rigid object by a pair of robot fingers with soft tips,” Proc. of the

2007 IEEE Int. Conf. Robot. Automat., pp. 4707–4714, Roma, Italy,
2007.

[17] K. Tahara, S. Arimoto and M. Yoshida, “Dynamic object grasping by a
triple-fingered robotic hand,” 2008 IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems., pp. 2685–2690, Nice, France, 2008.
[18] J.-H. Bae, S. Arimoto, R. Ozawa, M. Sekimoto and M. Yoshida,

“A unified control scheme for a whole robotic arm-fingers system in
grasping and manipulation”, Proc. of the 2006 IEEE Int. Conf. Robot.
Automat., pp. 2131–2136, Orlando, Florida, 2006.

2270


