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Abstract—We propose an object tracking system which rec-
ognizes everyday objects and estimates their positions by using
distributed sensors in a room and mobile robots. The placement
of objects is frequently changed according to human activities.
Although a passive RFID tag is attached to each object for the
object’s recognition, the placement is often not uniquely deter-
mined due to the deficiency of measured data. We have already
proposed a method for estimating the placement of objects by
using the moving trajectories of objects. This estimation result is
expressed as the probability distribution of the object placement.
However intersections of trajectories cause the decrease of the
estimation accuracy. So we propose a new method based on
Bayesian inference to improve the estimation accuracy by using
the size and the shape of an object measured by laser range finder.
Then a mobile robot settles the placement with small workload
by using the mounted sensor. The system successfully recognized
and localized 10 objects in the experiment.

I. INTRODUCTION

It is expected that a service robot supports the daily needs
of elderly people in a home. An object fetching task is one of
prospective applications for a service robot. If a service robot
can bring a requested everyday object, it will make people’s
life comfortable. A service robot needs the placement of
objects in a room to perform this task. Many position tracking
or estimation methods have been presented. However, most of
them use vision sensors and focus on the human tracking. The
sizes of most everyday objects are small. Everyday objects are
frequently held, carried and housed by a resident. In addition,
everyday objects may be put into hidden spaces such as a
pocket or a box. So, a conventional vision system for the
position tracking will not be straightly applicable to this object
tracking.

Some object tracking systems have been reported. A
RFID(Radio Frequency IDentifier) tag [1] is often used for the
position estimation of objects. A container with a RFID reader
can detect whether or not an object with a RFID tag is in it
[2]. However, the position of an object with a RFID tag is not
measurable when the object is out of the container. The signal
strength of an active tag is used for the position estimation
[3]. The presented method estimates 3-dimensional position
of an object with an UHF(Ultra High Frequency) RFID tag.
However, an active tag is box-type and needs a battery. An
ultrasonic tag is used for the position estimation [4]. The
position of an ultrasonic tag is estimated by using ultrasonic
receivers installed on the ceiling. An ultrasonic tag is attached
to a target object. However, an usual ultrasonic tag is box-

type, and is larger than an usual thin RFID tag. The positions
of residents walking in a room have been measured by using
pressure sensors distributed on the floor [5]. However, the
weights of everyday objects are sometimes too light to detect
it. Multiple vision sensors are used for the object tracking [6].
However, a resident will feel invasion of privacy under constant
surveillance by vision sensors installed in a personal space.

We have already proposed a object tracking system that
recognizes everyday objects and estimates their positions in a
room by using distributed sensors and mobile robots [7]. The
system integrates information measured by distributed sensors
for the object’s recognition and position estimation. However,
the deficiency of measured data causes the decrease of the
estimation accuracy. In this paper, we improve the system
by using the size and the shape of an object as additional
information in the data integration process.

II. OBJECT TRACKING

We propose an object tracking system which recognizes
everyday objects and estimates their positions by using dis-
tributed sensors. Assumptions for this system are as follows:

1) A passive RFID tag is attached to each object. An
object is uniquely identified by its tag ID.

2) Sensor systems installed in an environment measure
either both the position of an object and its tag ID or
only the position of an object.

Each measured position by a sensor system is labeled to
track it continuously. We call this label tracking-label. The
result of the object’s recognition and position estimation is
obtained as a combination of the tag ID of an object and its
position. We call a set of this combination ”object placement”.
Fig.1 shows the object placement of five object. This object
placement has five combinations of a tag ID and a ”tracking-
label” as the position of an object. If a sensor system can
measure both the position of an object and its tag ID, a
combination of the tag ID and the position of an object
is obtained as a measurement result. On the other hand, a
sensor system can measure only the position of an object, a
combination of the tag ID and the position of an object is
not obtained as a measurement result. The proposed system
estimates the tag ID related to the measured position by
using the SIR particle filter [8]. The SIR(sampling importance
resampling) particle filter integrates sensored information for
this estimation.
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The object placement changes according to human activ-
ities. In the estimation process of the object placement, the
system needs the transition model of the object placement to
reflect the change of the object placement caused by human
activities in the estimation process.

Our previous system [7] uses only the moving trajectories
of objects for this transition model. However intersections of
trajectories cause the decrease of the estimation accuracy. In
this paper, we improve the transition model by adding the size
and shape of an object in order to raise the estimation accuracy.

Fig. 1. Object placement: a combination of tag ID and tracking-label.

The estimation accuracy of the object placement is corre-
lated with the number of objects whose tag IDs are unmea-
surable by sensors distributed in an environment. A mobile
robot with a RFID reader can move to the position of each
unmeasurable object and measure its tag ID. The result of this
active sensing for one unmeasurable tag ID is integrated in
the estimation process and improves the estimation accuracy
of the object placement. We propose a method for choosing
a prospective position of unmeasurable object to improve the
estimation accuracy.

III. OBJECT TRACKING SYSTEM

A. System components

Several types of sensors are installed to a cabinet, the
floor, and a mobile robot. The proposed system collects three
types of measured information from each sensored component.
These information is integrated to estimate the object place-
ment.

1) Measured information from a sensored cabinet: We
installed a RFID reader and load cells to a cabinet. This
sensored cabinet performs the object’s recognition and position
estimation. Fig.2 shows the measurement result for three
bottles. A sensored cabinet outputs combinations of the tag
IDs and the positions of the objects stored in it. Each position
is related to tracking-label. Each tracking-label is uniquely
generated when an object get put into a sensored cabinet. A
sensored cabinet i outputs information Zi as a measurement
result.

Zi = {obj1, obj2, ... , objS} (1)

obj = {tracking − label, tagID} (2)

The set of output information of all sensored cabinets at
the time t is expressed as Zt = {Zi

t}.

2) Measured information from a sensored floor: We in-
stalled a laser range finder (LRF) and a mirror to the floor
(Fig.3). This sensored floor performs the position estimation
of objects and walkers on the floor [9]. A LRF can measure
the distances between the LRF and objects on the floor. The
positions of objects and walkers are continuously measured by
using the background subtraction.

(a) three bottles (b) top view

Fig. 2. Position estimation and recognition of three bottles in a sensored
cabinet.

The contour of an object on the floor is measured as a
point cloud (Fig.4). A strip of mirror placed on a wall reflects
the scanning beam of a LRF. These reflected scanning beams
increase the number of scanable points on the surface of an
object. The measurement result for four objects on the floor is
shown in Fig.5.

LRF
mirror

LRF

Fig. 3. The sensored floor.

Fig. 4. A point cloud of an object measured by the sensored floor.

LRF

Fig. 5. Position measurement of four objects by using the sensored floor.

A sensored floor outputs combinations of the positions and
articles of the objects on the floor. Each position is related to
tracking-label. Each tracking-label is uniquely generated when
an object get placed onto the floor. The sensored floor outputs
information Y as a measurement result.

Y = {y1, y2, ... , yM} (3)

y = {tracking − label, article} (4)

article = {person or object} (5)

Output information of the sensored floor at the time t is
expressed as Yt = {Yt}.
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3) Measured information from a mobile robot with RFID
readers: A robot with a RFID reader performs the object’s
recognition and position estimation. This robot outputs com-
binations of the tag IDs and the positions of objects within the
sensing are of the robot. Each position is related to tracking-
label. A robot i outputs information Ai as a measurement
result.

Ai = {obj1, obj2, ... , objN} (6)

obj = {tracking − label, tagID} (7)

The set of output information of all robots at the time t is
expressed as At = {Ai

t}.

B. Estimation of object placement using SIR particle filter

We use the SIR particle filter to estimate the object
placement by integrating sensored information. Each particle
has the hypothesis of the object placement and its likelihood.
The event Xt means the object placement is xt at time t. The
posterior probability p(Xt|Z, Y, A) after the observation Zt,
Yt, and At is recursively estimated using particles. Here, Z ,
Y , and A means events in which information Zt, Yt and At

are obtained from sensored cabinets, the sensored floor, and
mobile robots, respectively.

The procedure for using the SIR particle filter is:

1) Generation of initial particles:
R particles r(r)0 = {x(r)

0 , w
(r)
0 } are generated at time

0. Here, w(r)
t is the weight at time t. Vector x

(r)
t ∈

�N represents the hypothesis of the object placement
at time t (Fig. 6). In this initial step, vector x

(r)
0 is

randomly generated.

Fig. 6. Object placements of particles

2) State transition:
The object placement changes according to human
activities. We modelize the change of the object
placement caused by human activities. By applying
this transition model to particles r

(r)
t−1, they shift to

the next state r
(r)
t|t−1 = {x(r)

t|t−1, w
(r)
t }.

Transition model of object placement:
We assume the change of the object placement is

caused only by the following two actions:
(i) a person( or a mobile robot) puts a held object

onto furniture or the floor,
(ii) a person( or a mobile robot) takes up an

object.
The occurrence of the transition can be observed as
the change in the total number of tracking-labels
measured by the sensor systems.

Transition operation(I): When the total number of
tracking-labels increases, the operator replaces the
tracking-label of a person with the newly appeared
tracking-label in vector x

(r)
t−1 of each particle. This

operation indicates the action (i) mentioned above.
Transition operation(II): When the total number of
tracking-labels decreases, the operator replaces the
disappered tracking-label with the tracking-label of a
person in vector x(r)

t−1 of each particle. This operation
indicates the action (ii) mentioned above.
Apply these transition operations to R(1−K) parti-
cles r

(r)
t−1 chosen from the R particles. The constant

value K (0 < K < 1) depends on the reliability of
each sensor system installed in an environment.

In the transition operations (I) and (II), if several
persons are in a room, an operator needs to determine
who has caused the action (i) or (ii). An operator
chooses one of them by considering the probability
which depends on the distance between the position
of each person and the position of the tracking-label
newly generated or removed.

In the transition operation (I), if a person carries
some objects, their tag IDs are related to the tracking-
label of the person in the object placement. The
operator needs to determine which object has been
put on the floor. However, the sensored floor can
not measure its tag ID of the object. In the previ-
ous system, the operator chooses one of them with
even probability. On the other hand, in the proposed
method, the operator selects one of them with the se-
lection probability of each object in order to improve
the estimation accuracy. The selection probability is
derived by using the contour of an object on the
floor. The contour of an object is measured as a point
cloud by the sensored floor (Fig.4). The detail of this
transition operation is described in the next section.

3) Likelihood calculation:
The likelihood p(Z, Y, A | X(r)

t|t−1) of each particle
is calculated as
p(Z, Y, A | X(r)

t|t−1) =

p(Z|X(r)
t|t−1) p(Y |X(r)

t|t−1) p(A|X(r)
t|t−1) (8)

where

p(Z|X(r)
t|t−1) = C

S∏

s=1

gs(x
(r)
t ). (9)

gs(x
(r)
t ) is a function that returns 1.0 if the tracking-

label related to the object s in x
(r)
t corresponds to the

tracking-label related to the object s in Zt, and re-
turns the numerical constant α(0 < α < 1) if it does
not. The numeric constant C (0 < C < 1) depends
on the reliability of the sensored cabinet. p(A|X(r)

t|t−1)

is also calculated from Eq.(9). p(Y |X(r)
t|t−1) is the

constant value.
We define the weight w(r)

t of a particle as

w
(r)
t = p(Z, Y, A| X(r)

t|t−1). (10)
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The total weight of all particles is calculated as

w
(all)
t =

R∑

r=1

w
(r)
t . (11)

4) Resampling:
RD (0 ≤ D ≤ 1) particles r

(r)
t are chosen from

R particles. New RD particles r
(r)
t+1 are generated

depending to the probability w
(r)
t /w

(all)
t . New R(1−

D) particles r
(r)
t+1 are randomly generated.

5) Estimation of object placement:
The object placement is estimated based on the
distribution of R particles. The probability pij that
the object i is related to the tracking − label j is
obtained as

pij =
1

R

R∑

r=1

bij(r
(r)
t ). (12)

bij(r
(r)
t ) is a function that returns the numerical con-

stant 1.0 if the tracking-label related to the object i in
x
(r)
t of a particle r

(r)
t corresponds to the tracking−

label j, and returns 0 if it is not.

C. Active sensing for the tag ID of an object

The estimation accuracy of the object placement is corre-
lated with the number of objects whose tag ID is unmeasurable
by sensors installed in an environment. In order to improve the
estimation accuracy, a mobile robot with a RFID reader moves
to the position of this unmeasurable object and measures its
tag ID. When there are several unmeasurable objects, a robot
chooses one of them. For this active sensing, we propose a
method for choosing the most prospective tracking-label to
improve the estimation accuracy. This method is based on
the entropy H(E) of the probability distribution of the object
placement. The entropy H(E) is the index of insufficiently
of sensored information. The entropy increases when sensored
information is not enough to estimate the object placement.
The proposed method chooses the most prospective tracking-
label to reduce the entropy. The entropy H(E) is calculated
as

H(E) =

M∑

i

H(Li) = −
M∑

i

N∑

j

P (Li = lj) · logP (Li = lj).

(13)
Here, M indicates the total number of tracking-labels. The
probability P (Li = lj) that the object lj is related to
the tracking− label Li is calculated in the same as Eq.(12).

We defines the evaluation function F (Li) as the expecta-
tion value of mutual information after the tag ID of the object
of the tracking-label Li is measured. The tracking-label Lmax

which maximizes the evaluation function is chosen for the
active sensing.

F (Li) =
N∑

j

P (Li = lj) · I(E;Li = lj) (14)

I(E;Li = lj) = H(E)−H(E|Li = lj) (15)

Here, H(E|Li = lj) is the entropy under the assumption that
the object lj is related to the tracking-label Li .

IV. SELECTION PROBABILITY OF AN OBJECT PLACED ON
THE FLOOR

In the transition operation (I) of the proposed method, if a
person holds several objects, the operator needs to determine
which object of the held objects is placed on the floor. In the
previous method, the operator chooses one of them with even
probability. In the proposed method, the operator chooses one
of them with the selection probability of each object in order
to improve the estimation accuracy.

The selection probability is obtained by using the contour
of an object on the floor. The contour of an object is measured
as a point cloud by the sensored floor (Fig.7). We define the
object size as the maximum distance between two points in a
point cloud (Fig.7(b)). We also define the contour image as
the elliptical approximation of this point cloud (Fig.7(c)). The
object size and the contour image indicate a scale factor and
an approximate shape of an object, respectively.

size 

(a) (b) (c)

Fig. 7. A point cloud measured by the sensored floor ( (a) appearance of
the object, (b) the object size, (c) the contour image ).

The object size and the contour image of each object
include measurement errors. We determine the probability den-
sity function of measurement errors through the preliminary
measurements. We derive the selection probability by using the
probability density function, the object size, and the contour
image. This procedure is divided into two parts

A) calculation of the probability density function of
measurement errors, and

B) calculation of the selection probability of each object.

The contour of an object on the floor depends on its
orientation (Fig.8). At the part A), we derive 1) the probability
density function with respect to the object size and 2) the
probability density function with respect to the contour image
at each orientation of each object.

Fig. 8. The contour images of an object with different orientations.

At the part B), we derive the selection probability pselecti
by using Bayesian inference. pselecti indicates the selection
probability that the object i is selected from the objects held
by a person. The detail of the procedure is as follows.
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A. Probability density function for the measurement error

The contour of an object on the floor depends on its
orientation. At the orientation j of the object i, we derive
(1) the probability density function fsize

ij for the measurement
error of the object size, and (2) the probability density function
f contour
ij for the measurement error of the contour image. We

prepare f size
ij and f contour

ij at each orientation j of the object
i through the preliminary measurements. At each orientation
j of the object i, a point cloud of the object is obtained fifty
times through the measurements of the sensored floor. Each
data set Dij has fifty point clouds for the object i with its
orientation j.

1) Probability density function for the measurement error
of the object size: The object size is calculated from each point
cloud of the data set Dij . The average μij and the standard
deviation sizeσ2

ij of the object size are calculated at each Dij .
The probability density function fsize

ij for the measurement
error of the object size is expressed as the Gaussian distribution
N (0, sizeσ2

ij).

2) Probability density function for the measurement error of
the contour image: We generate the ideal contour image Iidealij
based on the actual shape of the object i with its orientation
j. This ideal contour image is compared with the contour
image measured by the sensored floor. The image similarity is
calculated through this comparison. We use seven Hu invariant
moments for this comparison [10]. These seven Hu invariant
moments are well known and independent parameters for the
translation, the rotation, and the scale change. Hu invariant
moments are expressed as following equations.

hu1 = η20 + η02 (16)

hu2 = (η20 − η02)
2 + 4η211 (17)

hu3 = (η30 − 3η)212 + (3η21 − η03)
2 (18)

hu4 = (η30 + η12)
2 + (η21 + η03)

2 (19)

hu5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

+(3η21− η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (20)

hu6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]

+4η11(η30 + η12)(η21 + η03) (21)

hu7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

−(η30 − 3η12)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (22)

The image similarity G(A,B) between the image A and
the image B is expressed as

G(A,B) =

7∑

i=1

| 1

mA
i

− 1

mB
i

| (23)

where

mA
i = sign(hA

i ) · log(hA
i ) , mB

i = sign(hB
i ) · log(hB

i ).

hA
i and hB

i indicates Hu invariant moments of the image A
and the image B respectively.

The image similarity G(A,B) is zero if the image A and
the image B are same image. The calculation result of the

Fig. 9. The calculation results of the image similarity between the left image
and the middle or the right image.

image similarity is shown in Fig.9. The numerical values on
the center and the middle image indicate the image similarity
between the left image and each image.

The contour image Icontourijk (1 ≤ k ≤ 50) is obtained from
each point cloud k of the data set Dij . The standard devia-
tion contourσ2

ij of the image similarity Gijk(I
ideal
ij , Icontourijk )

are calculated at each Dij . The probability density function
f contour
ij for the measurement error of the contour image is

expressed as the Gaussian distribution N (0, contourσ2
ij).

B. The selection probability

We derive the selection probability pselecti of the object
i from a point cloud dt of an object through the following
procedure.

1) Likelihood with respect to the object size: The object
size St is calculated from a point cloud dt measured by the
sensored floor at the time t. At each orientation j of the object
i, the measurement error esizeij of the object size St is expressed
as

esizeij = St − μij . (24)

The probability psizeij is obtained by substituting esizeij into
fsize
ij (Fig.10). We determine psizei as

psizei = max
j

(psizeij ). (25)

psizei indicates the likelihood that the object i is selected
from the objects held by a person, which is based on the
measurement error of the object size.

eijsize [mm]

probability

Fig. 10. Probability density function for the measurement error of the object
size.
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2) Likelihood with respect to the contour image: The
contour image Ct is calculated from a point cloud dt measured
by the sensored floor at the time t. At each orientation j of the
object i, the measurement error econtourij of the contour image
Ct is expressed as

econtourij = G( Iidealij , Ct ). (26)

The probability pcontourij is obtained by substituting econtourij

into f contour
ij (Fig.11). We determine pcontouri as

pcontouri = max
j

(pcontourij ). (27)

pcontouri indicates the likelihood that the object i is selected
from the objects held by a person, which is based on the
measurement error of the contour image.

eijcontour

probability

Fig. 11. Probability density function for the measurement error of the contour
image.

3) Selection probability of each object: The selection prob-
ability pselecti indicates the probability that the object i is
selected from the objects held by a person. pselecti is obtained
by applying Bayes’ theorem to psizei and pcontouri . Bayes’
theorem is expressed as

P (Hi|E) =
P (E|Hi)P (Hi)

P (E|H1)P (H1) + . . .+ P (E|Hn)P (Hn)
.

(28)

Hi is an event that the object i is selected. P (Hi) is
the probability of observing Hi. E is an event that the
measurement error e is measured. P (Hi|E) is the probability
of observing Hi given that E has occurred. P (Hi) is the prior
probability. P (Hi|E) is the posterior probability. P (E|Hi) is
the likelihood.

The number of the objects held by a person is n. pselecti
is the probability that the object i(1 ≤ i ≤ n) is selected. We
derive pselecti through the following procedures (i) and (ii).

(i) Bayesian inference by using the object size:
Esize indicates observing the measurement error with
respect to the object size. We determine P (Esize|Hi)
as

P (Esize|Hi) = psizei . (29)

We determine P (Hi) with even probability under the
principle of insufficient reason. P (Hi) is obtained as

P (Hi) =
1

n
. (30)

P (Hi|Esize) is obtained by applying Eq.(29) and
Eq.(30) to Eq.(28).

(ii) Bayesian inference by using the contour image:
Econtour indicates observing the measurement error
with respect to the contour image. We determine
P (Econtour|Hi) as

P (Econtour|Hi) = pcontouri . (31)

We determine P (Hi) as

P (Hi) = P (Hi|Esize). (32)

P (Hi|Econtour) is obtained by applying Eq.(31) and
Eq.(32) to Eq.(28).

We determine the selection probability pselecti as

pselecti = P (Hi|Econtour) , (1 ≤ i ≤ n). (33)

The estimation accuracy is improved by applying pselecti to the
transition operation (I) in the proposed method.

V. EXPERIMENT

The proposed system recognized ten objects and estimated
their positions in the experiment. The experimental setup is
shown in Fig.12. We installed two sensored cabinets and the
sensored floor as mentioned in section III. In this experiment,
we used ten everyday objects with RFID tags as shown
in Fig.13. One person walked around in a room, and he
moved several objects from sensored cabinets to the floor. The
proposed system estimated the object placement which was
frequently changed with human activity.

6 m

4 m

table

chair chair

sensored cabinet A

sensored cabinet B desk

LRF50 cm

bed

Fig. 12. Experimental setup.

Fig. 13. Tracking target objects.
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The scenario of the experiment is explained as following
three steps. At the step 1, all objects are in two sensored
cabinets. The estimation result of the object placement at the
step 1 is shown in Fig.14. The measured positions by sensored
cabinets are shown as colored circles. The numbers from 1 to
10 mean the tag IDs of objects. The position of each object is
estimated as the probability of the relationship between each
object and each measured position. This probability is obtained
from Eq.(12). The length of each color in a bar graph indicates
the value of its probability. Each color indicates a measured
position. The sum of the probabilities in each bar graph is 1.0.
Each bar graph is composed of mono color in Fig.14. This
means that the position of each object is uniquely estimated. In
addition, the object placement is correctly estimated. Because
sensored cabinets can measure both the tag IDs and the
positions of the objects in them.

objects in cab.

tag IDs

Fig. 14. Tracking result after the step 1 (Six objects are in the cabinet A,
and four objects are in the cabinet B).

Fig. 15. Experimental process at the step 2 (Six objects are on the floor and
four objects are stored in the cabinet B).

At the step 2, a person takes six objects from the sensored
cabinet A. The tag IDs of these objects are 1, 2, 6, 8, 9,
and 10. The person puts them one-by-one onto the floor as
shown in Fig.15. At the step 2, the estimation results of the
object placement are shown in Figs.16 and 17. The measured
positions by the sensored floor are shown as colored squares
with alphabets which indicate tracking-labels. The white color
in a bar graph indicates the position of the person. So, the
white color means that object is held by a person. When a
bar graph is composed of several colors, the position of its
object is not uniquely estimated. Because the sensored floor
cannot measure tag IDs of objects on the floor. A bar graph in
each lower image in Fig.17 also indicates the probability of the
relationship between each object and each tracking-label. The
vertical axis indicates the probability in each lower image. The
horizontal axis indicates the tag IDs. From Fig.17, the accuracy
rate of the position estimation of each object is ranging from
70 % to 100 % after the step 2.

held by person tracking-label B

object on the floor

Fig. 16. Tracking result at the step 2 (Three objects are on the floor. Three
objects are held by the subject. Four objects are in the cabinet B).

chosen 
tracking-label

Fig. 17. Tracking result after the step 2 (Six objects are on the floor. Four
objects are in the cabinet B.).

The proposed system tracks ten objects by using both the
moving trajectories of objects and the size and the shape
of an object placed on the floor. On the other hand, the
previous system uses only the moving trajectories of objects.
The estimation result of the previous system after the step 2 is
shown in Fig.18. The accuracy rate of the position estimation
of each object on the floor is under 20 %. This means that
the moving trajectory information is not enough to determine
which object is placed on the floor. So the previous system
chooses one of them with even probability. This simple choice
causes the decrease of the estimation accuracy.

At the step 3, the active sensing is performed to improve
the accuracy rate of the position estimation. The entropy of the
probability distribution of the object placement is calculated
from Eq.(13). The calculation result of the entropy in the
experiment is shown in Fig.19. The entropy increases when
sensored information is not enough to estimate the object
placement. When the entropy increases, the accuracy rate
of the position estimation decreases. The entropy increases
due to the handling of objects by the person in the step 2.
For this active sensing, the most prospective tracking-label
D is chosen by applying Eq.(14). The tag ID of an object
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Fig. 18. Tracking result by using the previous system after the step 2 (Six
objects are on the floor. Four objects are in the cabinet B.).

at the position with tracking-label D was measured through
the active sensing. The estimation result after the step 3 is
shown in Fig.20. The accuracy rate of the position estimation
of each object is nearly 100 %. The accuracy rate is clearly
improved through the active sensing. The entropy in the case
using additional information such as the size and the shape
of an object is smaller than the entropy in the case not using
it. The proposed system conducted the active sensing once at
the step 3. On the other hand, the previous system required to
conduct the active sensing four times in order to reduce the
entropy enoughly.

Entropy

experimental 
process

the previous 
method

the proposed 
method

step 1 step 2 step 3

Fig. 19. The calculation result of the entropy.

VI. CONCLUSION

We propose an object tracking system which recognizes
everyday objects and estimates their positions by using dis-
tributed sensors in a room and mobile robots. Our previous
system estimates the object placement by using only the mov-
ing trajectories of objects. This estimation result is expressed

Fig. 20. Tracking result after the step 3.

as the probability distribution of the object placement. The
object placement is frequently changed according to human
activities. Intersections of trajectories cause the decrease of
the estimation accuracy. The object placement is often not
uniquely determined due to the deficiency of measured data.
So we proposed a new method that improves the estimation
accuracy by using the size and the shape of an object as
additional information in the data integration process based on
Bayesian inference. The size and the shape of an object are
approximately calculated from a point cloud measured by laser
range finder. Although the tag IDs of the objects on the floor
are not measurable by sensors distributed in the environment,
the system successfully estimated the object placement in the
experiment.
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