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Abstract— For a coexisting and collaborative society that
incorporates humans and robots, the detection, tracking, and
recognition of human motion are indispensable techniques for a
robot to safely and securely interact with humans. The present
paper proposes a motion tracking system using distributed
network cameras that are placed in a sizeable environment, such
as a street or a town. Model-based motion tracking is adopted
in this system, and an asynchronous process is invoked for
updating motion estimation in each camera individually. A 2D
distance map created by the Fast Marching Method is used to
estimate human motion in real-time. Experiments demonstrate
that human motion while walking among eight distributed cam-
eras is tracked correctly by automatically selecting appropriate
cameras.

I. INTRODUCTION

As the tasks performed by robots have expanded from the
factory assembly line to the everyday human environment,
the situation surrounding the use of robots has become
increasingly complicated, and the amount of information
that must be processed by robots has increased rapidly.
However, it is almost impossible for a robot to acquire and
process all of this information by means of its on-board
computer and sensors, because the capacity and performance
of this equipment are quite limited. On the other hand, if
the environment surrounding the robot is structured using
IT technology such as a distributed sensor network, the
robot can perform tasks more reliably and safely, even if
the performance of the equipment is limited. This approach
involves what is referred to as an Informationally Structured
Environment. The basic concept of this approach is that
robots provide a variety of services based on environmental
information from not only on-board sensors but also sensor
networks embedded in the environment.

As an empirical example of the abovementioned approach,
we have been involved in the Robot Town Project [1]. The
goal of this project is to develop a distributed sensor network
system covering a town-size area in which there are several
houses, buildings, and streets, and robots manage various
services by monitoring the events that occur in the town.
The events sensed by the distributed sensors are reported
to the Town Management System (TMS), and each robot
receives appropriate information concerning its surroundings
and instructions for services from TMS. We have already
developed a prototype TMS and have demonstrated a number
of applications for human-robot collaboration [1] based on
several practical scenarios.
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In the present paper, we introduce a human motion track-
ing system using distributed network cameras in a vast
environment, such as a town or a street. This function is
one of the fundamental technologies necessary in order for
humans and robots to coexist and safely interact. The pro-
posed system enables the detection of human spatiotemporal
information, such as position, movement direction, and hand
and leg movements.

The remainder of the present paper is organized as follows:
Related research is described in Section 2. In Section 3,
we introduce the basic algorithm of the proposed tracking
system using the 2D distance field and its expansion to
the distributed network cameras. Section 4 describes the
experimental results of motion tracking for single and mul-
tiple individuals using eight distributed network cameras.
Conclusions are presented in Section 5.

II. RELATED RESEARCH

Image-based motion tracking using a single camera or a
few cameras can be divided into two categories, i.e., learning-
based motion tracking and model-based motion tracking.
Learning-based motion tracking [2]–[5] is a method by which
several pairs of human postures and image features are
collected and stored in a database during a learning phase.
During the execution phase, human postures are estimated
by interpolating postures that fit the acquired image features
in the database.

Model-based motion tracking, on the other hand, directly
compares a 3D model of a human body and acquired camera
images and subsequently estimates the appropriate posture of
the 3D model [6]–[18]. A standard processing flow of this
technique is as follows: i) a 3D model of a human body with
an arbitrary initial posture is projected on a camera image,
ii) image features of the projected and acquired images, such
as edges and contours, are compared, and iii) the optimum
posture in which these features coincide with each other is
selected as the estimated posture. However, for the case in
which the calculation cost of the image features is large
or several cameras are used simultaneously, an effective
tracking algorithm is essential when considering real-time
processing. In particular, since a time delay induces a critical
problem for human-robot interaction in terms of feeling and
safety, the latency of the motion estimation should be reduced
as much as possible.

In the present study, we develop a real-time motion
tracking system using distributed network cameras. Key
techniques of this system are the use of the 2D distance
field in a camera image [19], which is constructed quite
rapidly using the Fast Marching Method [20], and the
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asynchronous procedure for model-based motion estimation,
which is suitable for distributed network cameras.

Sminchisescu et al. proposed a technique using the 2D
distance field based on silhouette images [21], that is similar
to the technique proposed herein. However, the proposed
technique allows fast construction of the 2D distance field in
a coarse-to-fine manner and real-time integration of motion
estimation using distributed network cameras.

III. MOTION TRACKING SYSTEM USING THE 2D
DISTANCE FIELD

A. 2D-3D alignment of a rigid object

The present study uses a fast tracking technique for a rigid
object using a 2D distance field constructed in a coarse-to-
fine manner [19], [22]–[24]. The 2D distance field is a map
that shows the minimum distance from a point or a line
to another point on the image plane. This technique was
developed for the fast 2D-3D alignment of a rigid object
and can be performed faster than the conventional Iterative
Closest Point (ICP) method because there is no need to
search point correspondences, which is a costly procedure
in the conventional ICP method.

A brief description of the 2D-3D alignment procedure for
a rigid object is as follows:

1) Prepare or capture an object image and a 3D model
of the object. We assume that this model consists of a
number of small triangle patches.

2) Extract a contour line of a silhouette of the object in
the 2D image using an Active Contour Model such as
Snakes or the Level Set Method [20], [25].

3) Construct a 2D distance field using Fast Marching
Method [20] from the contour line of the silhouette us-
ing the coarse-to-fine approach explained herein later.

4) Place a 3D model of the object at an arbitrary position
and posture in 3D space.

5) Project the 3D model of the object on the 2D image and
find the triangular patches on the occluding boundary
of the projected image.

6) Read the 2D distance value on the occluding boundary
of the projected image extracted in Step 4. This value
indicates the alignment error between the 2D image
and the 3D model. Therefore, the total alignment error
is calculated by determining the sum of the 2D distance
values on the entire occluding boundary. Gradient
vectors of the alignment errors can be calculated at
the same time.

7) Calculate the compensation values of the position
and posture of the 3D model in order to reduce the
alignment error using gradient vectors.

8) Repeat Steps 1 through 6 until the 2D image and the
projected image of the 3D model coincide with each
other.

We expand the above technique for motion tracking of a
human body including some rigid bodies and joints using
distributed network cameras.

B. 3D Human Body Model

The developed system uses the 3D human body model
shown in Fig. 1 1. This model consists of 14 links and 13
joints. The numbers assigned to the coordinate systems in
Fig.1 indicate the degrees-of-freedom of the joints. The total
number of degrees-of-freedom of the model is 21.

Note that we assume the position and posture of the 3D
model to be defined by the 3D position of the body center,
the rotation angle around the vertical line passing through
the center of the body, and 16 joint angles of eight joints,
not including the neck, wrists, and ankles. The 3D model is
composed of a number of small triangular patches of similar
size.

Fig. 1. 3D human body model1

C. Construction of the 2D distance field and posture esti-
mation

1) Construction of the 2D distance field: The 2D distance
field T in this system is a map that indicates the minimum
distance from a point on the contour line Ih of the body
silhouette to an arbitrary point on the image. Therefore, T
on the point p = (xp, yp) satisfies the following constraint:

T (p) = 0, p ∈ Ih (1)

| �T (p) |= 1 (2)

To create the 2D distance field, a camera image is cap-
tured and a silhouette image of a human is extracted by
first subtracting the background image. Next, the Level Set
Method is applied to obtain the contour line of the human
body. The 2D distance map T is then constructed using the
Fast Marching Method. In this step, we adopt a coarse-to-
fine approach, that is, a dense 2D distance field is constructed
around the contour line using a high-resolution image. On
the other hand, a coarse 2D distance field is created for the
regions that are far from the contour line by decreasing the
resolution of the image. An example of the 2D distance field
is shown in Fig.2.

1The original model was obtained from Cyberware, Inc.
http://www.cyberware.com/products/scanners/wbxSamples.html
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Original image Contour image 2D distance field

Fig. 2. Construction of the 2D distance field

2) Open Dynamics Engine, ODE: To imitate a natural
motion of a human, dynamics parameters such as the mass
and the inertial force should be considered. For example,
when a human takes a step forward, the knee joint becomes
free temporarily, and a natural walking motion is realized as
a step forward by the inertial force under the knee joint.

To consider these dynamic effects, we adopt the Open
Dynamics Engine (ODE) for the calculation of whole-body
motion. The ODE is a free dynamic simulator developed
by Dr. Russell Smith [26], and the dynamic simulation of
multiple body dynamics can be performed in real time.

3) Calculation of compensation values: Compensation
values to reduce the residual error are calculated as follows:
First, the 3D model of a human body is projected on the
2D distance field, T . Here, a point on the contour line of the
projected 3D model is pi = (xpi

, ypi
), and the corresponding

triangle patch is ui. The force fi applied to the patch ui

parallel to the 2D image plane is defined as follows:

fui
=

[
T (pi)Tx(pi)/D(pi)
T (pi)Ty(pi)/D(pi)

]
(3)

D(pi) =
√

Tx(pi)2 + Ty(pi)2 (4)

where Tx and Ty are the derivatives of T in the x and y
directions, respectively. The force F applied to the center of
the 3D model of the human body is obtained as follows:

F =
∑
ui

fui
(5)

By applying the force F to the center of the 3D model, the
position is updated.

Fig. 3. Arm model

Next, the compensation values for the joints are calculated.
For simplicity, we first consider the arm part in Fig.3. Here,
we denote a patch corresponding to the projected contour
line of the forearm as uforei

, the vector from the elbow to
the patch uforei

as rforei
, and the force applied to the patch

uforei
, which is parallel to the image plane, as fforei

. The
moment around the elbow joint is calculated as follows:

Melbow =
∑

uforei

(rforei
× fforei

) (6)

Therefore, the compensation torque of the elbow joint is
calculated as

τfore = selbow · Melbow (7)

where selbow is the axis of rotation of the elbow joint.
Next, we denote the patch corresponding to the projected

contour lines of the upper arm as uupperj
, the vector from

the shoulder to patch uupperj
as rupperj

, the force applied to
patch uupperj

parallel to the image plane as fupperj
, and the

vector from the shoulder to the elbow as rse. The moment
around the shoulder joint is calculated as follows:

Mshoulder =
∑

uupperj
(rupperj

× fupperj
)

+
∑

uforei
((rforei

+ rse) × fforei
)

(8)

Therefore, the compensation torques of the shoulder joint
are calculated as

τroll = sroll · Mshoulder (9)

τpitch = spitch · Mshoulder (10)

τyaw = syaw · Mshoulder (11)

where sroll, spitch, and syaw are the axes of rotation of the
shoulder joint.

From these compensation torques, the compensation angle
of each joint is calculated by the ODE by taking the inertia
and mass of the body, arms, and legs into consideration.

frame 0 frame 2frame 1

Fig. 4. Examples of motion estimation

4) Implementation of the Level Set Method on GPU by
CUDA: The Level Set Method [25], which extracts the
silhouette contour, can be implemented in a parallel manner
because this procedure is executed individually at each pixel.
Therefore, we use the CUDA programming language, which
enables the execution of various scientific calculations on
a Graphics Processing Unit (GPU) and the implementation
of the Level Set Method on a GPU. Using the GPU, the
calculation time of the Level Set Method for an image with
640 x 480 pixels is 14.7 [ms], and real-time processing is
realized.

D. Estimation of hand and foot positions by skin color

For the case in which the legs and arms overlap other
body parts in the camera image, it is impossible to extract
exact contour lines of the legs and arms, and so the correct
compensation values cannot be obtained. Therefore, we use
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the information of the skin color of the hands and feet in
addition to the alignment technique explained above.

First, we project the 3D model on the camera image and
calculate vectors fhand from the projected hand and foot
positions of the 3D model to the hand and foot positions
extracted by skin color. Next, this vector is back projected
to the 3D coordinate, and the 3D vector f

′
hand is calculated.

The new compensation torque of the elbow joint is obtained
as

M
′
elbow = reh × f

′
hand (12)

τ
′
elbow = selbow · M ′

elbow (13)

where reh is the 3D vector from the elbow joint to the hand.
In the same manner, the compensation torque of the

shoulder joint is obtained as follows:

M
′
shoulder = (rse + reh) × f ′

hand (14)

τ
′
roll = sroll · M ′

shoulder (15)

τ
′
pitch = spitch · M ′

shoulder (16)

τ
′
yaw = syaw · M ′

shoulder (17)

All the compensation torques for the elbow and shoulder
joints of both arms are calculated using Eqs. (7), (9) (11),
(13), and (15) ∼ (17), the compensation angle for each
joint is calculated using the ODE. This procedure is also
performed for both legs. Figure 4 shows an example of
alignment using the 2D distance field and the skin color.

E. Motion tracking system using distributed network cam-
eras

Since the procedure explained above is for a single camera,
we expand this system to a distributed network camera
system. The system configuration is shown in Fig. 5.

Fig. 5. Motion tracking using the distributed network camera system

This system consists of N network cameras connected to
N PCs. In each PC, a 3D human body model is stored
individually. All PCs are connected to a main PC by the

Internet, in which the integrated posture of the 3D model is
stored.

The processing flow is as follows. First, each camera
executes the estimation procedure of the posture of 3D model
asynchronously, and the compensation angles of joints are
estimated in each camera coordinate. Here, the initial posture
of the 3D model in each PC is set with the posture stored in
the main PC. Next, the obtained compensation angles are sent
to the main PC asynchronously, and the posture of the 3D
model in the main PC is updated. Due to this asynchronous
procedure, the processing cost of each PC is approximately
constant, even if the number of cameras increases, and this
system is suitable for a distributed multiple-camera system.

(a) Tracking using two cameras (b) Tracking using distributed cameras

Fig. 6. Experimental setup

IV. MOTION TRACKING EXPERIMENT

A. Real-time motion tracking using two cameras

First, we conducted an experiment involving posture es-
timation using only two cameras. The processing time of
the construction of the 2D distance field is 8.7 [ms], and
the calculation time of the compensation angles is 3.0 [ms]
(Dual-Core Xeon 3.2 GHz, 1 GB). Figure 6(a) shows the
experimental condition, and the estimated posture for the
seating motion is shown in Fig.7.

B. Real-time motion tracking for two individuals

Next, we conducted an experiment involving simultaneous
posture estimation for two people. Figure 8 shows the exper-
imental results. As shown in the figure, simultaneous posture
estimation for two individuals was successfully carried out.
In this experiment, the processing time of the construction
of the 2D distance field was 6.5 [ms], and the calculation
time of the compensation angles was 4.2 [ms]. One of the
characteristics of the proposed technique is that, once the
2D distance field has been constructed, the processing time
is not affected by the number of contours. Therefore, the
proposed technique is suitable for the simultaneous motion
tracking of multiple individuals.

C. Posture estimation using distributed network cameras

Finally, we conducted an experiment using distributed
network cameras. We placed eight cameras in a circle and
assumed that these cameras were calibrated manually or by
observing mobile robots [27] beforehand. Appropriate cam-
eras are automatically selected according to the distance from
the individual and the current posture of this person. More
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camera1 camera2 3D models

Fig. 7. Tracking results for sitting motion by two cameras

precisely, the posture is estimated by the camera for which
the distance to the estimated position of the individual is less
than 5 m and the person is facing toward. Figure 6 shows
the experimental condition, and Fig.9 shows the experimental
results. The processing time for the construction of the 2D
distance field and the posture estimation in each PC are 10
[ms] and 7 [ms], respectively, and the processing time for
the main PC for one update cycle is 125 [ms].

In this experiment, the individual walks halfway around
the circle of cameras in the counterclockwise direction, sits
on a chair, stands up, walks halfway around in the clockwise
direction, and stands on a chair.

As shown in Fig.9, the appropriate cameras which are
shown with light brown are selected automatically according
to the position and posture of the individual, and the posture
estimation is successfully carried out in any positions of the
area.

V. CONCLUSIONS

In the present paper, we introduced a real-time motion
tracking system that uses distributed network cameras. The
proposed system uses the 2D distance field, which is con-
structed quite rapidly using the silhouette contours by the
Fast Marching Method. Unlike the conventional ICP based
method, this technique does not require the point correspon-
dence to be determined, and thus fast calculation is possible

camera1 camera2 3D models

Fig. 8. Tracking results for two people using two cameras

for the posture estimation. Experimental results obtained
using distributed network cameras reveal that various human
motions, such as walking, sitting down, and standing up,
are estimated by selecting appropriate cameras according to
the current situation. Future research will include motion
estimation experiments in an everyday environment, such
as a house, and collaboration with service robots using
estimated human motions.
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