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This paper proposes a new radar tracking filter named Noise-estimate Particle Filter (NPF). Kalman fil-
ter and particle filter are popular filtering techniques for target tracking. The tracking performance of the
Kalman filter severely depends on the setting of several parameters such as system noise and observation
noise. However, it is an open problem how to choose proper parameters for various scenarios, and they are
often regulated in trial-and-error manner. The proposed filter estimates proper noise parameters of a Kalman
filter on-line based on a scheme of particle filter. Simulation results show that the proposed filter has higher
tracking performance in various scenarios than conventional Kalman filter and particle filter.
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1. Introduction

Target tracking is a fundamental technique in not only
computer vision but also various application fields. For
example, in air traffic control by a radar sensor, mul-
tiple high-speed flight vehicles must be tracked simul-
taneously without lost-tracking while estimating their
velocities and heights. However, in general, radar data
is severely corrupted by noise due to atmospheric con-
ditions or radar reflection property of the target, and it
is still challenging to track targets stably under severe
noisy condition.
For target tracking, a time series filter is very effec-

tive to suppress noise in sensory data and track targets
smoothly and stably. In a time series filter, the current
target position, which is estimated based on past ob-
servation and a motion model, are merged with current
observation and the optimum position is derived. Es-
pecially, the time series filter which removes the noise
component in the radar data and estimates the current
position and velocity of the target is called ”tracking
filter”.
Kalman filter is the most popular and widely-used

tracking filter and has been applied to various appli-
cations so far. Based on the assumptions on linear and
gaussian noise in sensory data, this filter estimates the
statistically-optimized state of the target. Uniform lin-
ear motion is usually adopted as a motion model in sim-
ple Kalman filter. In case that target motion does not
follow the uniform linear model, a system noise param-
eter which should be adjusted beforehand to absorb the
system error affects the tracking performance severely.
However, it is an open problem how to choose a proper
value of the system noise parameter beforehand for var-
ious scenarios such as non-linear motion or rapid ac-
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celeration/deceleration. In addition, an observation er-
ror which represents the accuracy of sensor/radar and
has to be adjusted beforehand affects the performance
of the Kalman filter, too. The observation model is
also difficult to be set appropriately for various targets
with a variety of shapes, motion directions, heights, dis-
tances, etc. Currently, a target tracking system based
on Kalman filter has to be designed with proper sys-
tem parameters in a try-and-error manner to meet the
desired performance (1).
In few decades, particle filter has been attracting much

attention as a high-performance tracking filter. In par-
ticle filter, instead of estimating the probability distri-
bution of the object state from the past observation and
motion model in a parametric way, the probability distri-
bution is represented by a set of particles. Each particle
has a weight which represents the probability of the state
of the particle. The particle is updated and re-sampled
according to the Bayesian recursion equation.
Particle filter has been applied to various applications

such as human tracking, state estimation, etc. (2)∼(8).
Particle filter does not depend on the assumption of
linear or gaussian noise, and is able to be applied for
various systems even with non-linear and non-gaussian
noise. However, the particle filter is less effective than
the optimized Kalman filter for a target moving by a
motion model, and the improvement of the tracking per-
formance for various conditions is an open problem in
particle filter.
This paper proposes a new tracking filter named the

noise-estimated particle filter (NPF), which combines
Kalman filter and particle filter. As mentioned above,
Kalman filter is an optimum filter in case that the mo-
tion model of targets and observation model of sen-
sor/radar are correctly provided. In the proposed fil-
ter, instead of estimating the state of the target such as
position or velocity directly, the system error and the
observation error are estimated on-line by particle-filter
based approach. More correctly, the state of the tar-
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get is estimated based on Kalman filter, and its motion
noise and observation noise are optimized by particle fil-
ter. Since the critical parameters of the Kalman filter are
adjusted on-line according the observation, the proposed
filter can be applied for a variety of target motions in-
cluding not only uniform linear motion, but also sudden
motion changes such as abrupt acceleration/deceleration
or steep turn.
Some authors proposed combination filters of particle

filter and Kalman filter (9)∼(12). Rao-Blackwellized Par-
ticle Filters (11) is the most popular technique in SLAM
(Simultaneous Localization and Mapping). Localization
and mapping procedures are separated in this filter and
implemented using particle filter and Kalman filter, in-
dividually. Marginalized Particle Filter proposed Schon
et al. (12) separates linear and nonlinear parts in the con-
trol system and assigns Kalman filter and particle filter
separately. However, to our best knowledge, the pro-
posed filter which utilizes particle filter for estimating
the parameters of optimum Kalman filter has not been
proposed so far. Satoh et al. (10) proposed a color-based
tracking technique using Kalman Particle Filter (9). As
the noise-estimated particle filter proposed in the paper,
the state of each particle si updated by Kalman filter.
In their method, however, the observation noise is de-
termined according to the weight of the particle and the
state noise is determined previously.

2. Noise-estimated Particle Filter (NPF)

In the noise-estimated particle filter (NPF), a number
of Kalman filters with a variety of sets of parameters
runs simultaneously in a parallel way. As conventional
particle filter, particles are re-sampled according to the
errors between the estimated and observed states. By
evaluating the performance of a number of Kalman fil-
ters with a variety of motion and observation parameters
estimated adaptively, optimum target tracking which
has similar high performance as optimized Kalman fil-
ter for a fixed condition is achieved for various motion
pattens including uniform linear motion, abrupt accel-
eration/deceleration or steep turn.
2.1 Estimation of system and observation

noise parameters
2.1.1 Model definition In the proposed track-

ing filter, each particle executes a similar process as
Kalman filter individually. Firstly, a state space model
for a target system is defined in each particle.

xi
k+1 = Φkx

i
k +wi

k · · · · · · · · · · · · · · · · · · · · · · · · · (1)
zik = Hxi

k + vi
k · · · · · · · · · · · · · · · · · · · · · · · · · · · (2)

Eq.(1) is a motion model which represents a state tran-
sition and Eq.(2) is an observation model which shows
the relation of estimated and observed states. xi

k is a
state vector which contains position and velocity terms.
Φk is a state transition matrix and, in this paper, the
uniform linear motion is assumed in all particles as fol-
lows.

Φk =

(
I ∆tI
0 I

)
· · · · · · · · · · · · · · · · · · · · · · · · · · (3)

where ∆t is a sampling interval, I is an identity ma-
trix, and H = (I 0) is an observation matrix. wi

k is a
vector of system noise with an average 0 and an error
covariance matrix Qi

k, respectively. vi
k is also a vec-

tor of observation noise with an average 0 and an error
covariance matrix Ri

k.

2.1.2 Tracking process A set of particles at

time tk is defined as Xk =
{
xi
k, w

i
k, q

i
k, r

i
k

}N

i=1
. Here, xi

k

is a hypnosis for a state vector of position and velocity,
wi

k is a weight of each particle, and qik and rik are system
and observation noises at each particle, respectively.

( 1 ) Produce N initial particles X0 =
{
xi
0, w

i
0, q

i
0,

ri0
}N

i=1
. The position, velocity, and system and

observation noises are set with random numbers
in particular ranges.

( 2 ) Execute step (a) to step (f) at time tk (k =
1, · · · , T )
(a) Estimation
Execute prediction procedure in each particle

by Kalman filter and estimate the current state
from the previous state and the motion model.

xi
k|k−1 = Φkx

i
k−1|k−1 · · · · · · · · · · · · · · · · · (4)

Pi
k|k−1 = ΦkP

i
k−1|k−1Φ

T
k +Qi

k · · · · · · · (5)
where xi

k|k−1 is an estimated state in each parti-

cle and xi
k−1|k−1 is a previous state at time tk−1.

Pi
k|k−1 is an error covariance matrix in each par-

ticle and Pi
k−1|k−1 is an previous error covariance

matrix at time tk−1.
An error covariance matrix of system noise Qi

k

at time tk is obtained as follows.

Qi
k = diag

{
qik

2
, qik

2
, qik

2
}
· · · · · · · · · · · · · · (6)

(b) Smoothing
To fit the estimated state with the current

observation and estimate more accurate state,
smoothing process in Kalman filter is applied in
each particle.

xi
k|k = xi

k|k−1 +Ki
k[zk −Hxi

k|k−1] · · · · (7)

Pi
k|k = (I−Ki

kH)Pi
k|k−1 · · · · · · · · · · · · · (8)

Ki
k = Pi

k|k−1H
T [HPi

k|k−1H
T +Ri

k]
−1(9)

where xi
k|k is the estimated state of the particle

at time tk, P
i
k|k is the estimated error covariance

matrix in each particle, and Ki
k is a gain matrix.

The error covariance matrix of observation noise
Ri

k at time tk is obtained as follows.

Ri
k = diag{rik

2
, rik

2
, rik

2} · · · · · · · · · · · · · ·(10)
(c) Likelihood calculation
The likelihood p(zk|xi

k|k) at each particle is cal-

culated as follows.

p(zk|xi
k|k) =

1√
2πσ2

s

exp

(
−d2i
2σ2

s

)
· · · · · (11)

where σs is a parameter to evaluate the accuracy
of the hypnosis, di is an Euclidean distance be-
tween the position compornent in xi

k|k and the ob-

served position zk. In the following experiments,
we set σs = 300.
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Next, the weight of each particle is updated ac-
cording to the obtained likelihood as follows.

wi
k = wi

k−1p(zk|xi
k|k) · · · · · · · · · · · · · · · · · (12)

In addition, the sum of the weight of all parti-
cles is calculated by Wk = ΣN

i=1w
i
k and the weight

of each particle is normalized as wi
k = wi

k/Wk.
(d) State estimation
Estimated state x̂k at time tk is calculated by

the weighted mean of N particles.

x̂k ≈
N∑
i=1

wi
kx

i
k|k · · · · · · · · · · · · · · · · · · · · · · (13)

(e) Resampling
Particles are re-sampled according the the prob-

ability proportional to the weight value wi
k. As

a result, particles with lower weight are removed
and ones with higher weight are increased.
(f) Update
In contrast to updating position and/or velocity

in a conventional particle filter, random offset val-
ues obtained with a normal distribution are added
to the system noise qik and the observation noise
rik, respectively.

qik = qik +∆qik · · · · · · · · · · · · · · · · · · · · · · · (14)

rik = rik +∆rik · · · · · · · · · · · · · · · · · · · · · · · (15)
where ∆qik and ∆rik are determined according to
the normal random number with an average of 0
and a variances of σq and σr, respectively. σq and
σr are predetermined parameters, and in the fol-
lowing experiments, we set σq = 0.1 and σr = 5.

2.2 Estimation of system noise parameter
In the previous section, we showed a method to estimate
the system and observation noise parameters simultane-
ously. However, in some cases, observation noise param-
eter is given according to the pre-defined accuracy of the
sensor/radar, and on-line estimation is unnecessary.
Therefore, this section shows the another technique

which estimates the system noise parameter only by the
proposed noise-estimated particle filter.

2.2.1 Re-sampling procedure As a result of
preliminary experiments, it was shown that dynamic
range of the optimum system noise is quite large for a
radar tracking. For example, the optimum system noise
for a turning motion is about few hundreds in the follow-
ing experiments. On the other hand, the optimum value
for straight motion should be almost zero to track accu-
rately. To handle this large dynamic range, this section
introduces a new re-sampling technique for radar track-
ing system.
This re-sampling technique utilizes two kinds of parti-

cles. By distributing them in different ranges, this filter
can handle a large dynamic range of the system noise.
The procedure of the re-sampling process is as follows.

( 1 ) Beside a group of particles Xk−1 at tk−1, two

kinds of groups Xup
k−1 =

{
xup,i
k−1, w

up,i
k−1, q

up,i
k−1

}N

i=1
,

Xdown
k−1 =

{
xdown,i
k−1 , wdown,i

k−1 , qdown,i
k−1

}N

i=1
are pro-

duced. We adopt two update processes of the
system noises in each group as follows.

qup,ik−1 = qup,ik−1 +∆qup,ik−1 · · · · · · · · · · · · · · (16)

qdown,i
k−1 = αqdown,i

k−1 · · · · · · · · · · · · · · · · · · · · (17)
In the above procedure, ∆qup,ik−1 is given by a

normal distribution of an average 0 and a vari-
ance σup, and α is a uniform distribution within
[0, σdown]. σup and σdown are control parameters.
In the following experiments, we set σup ≈ 100 ∼
1000 and σdown ≈ 0.1. Consequently, Xup

k is a
group of particles with a relatively large system
noise and Xdown

k is a group with a system noise
smaller than the previous state.

( 2 ) For these two groups of particles Xup
k−1 and

Xdown
k−1 , update, smoothing and likelihood calcu-

lation procedures are applied and new groups of
particles at current period Xup

k and Xdown
k are

produced.
( 3 ) Choose N particle according to the following

rules.
•According to the observed data zk, P parti-
cles of Xdown

k are selected among the particles
within the range of the sensor observation er-
ror. More correctly, particles which meet the
following condition are selected.

|zk − xdown,i
k | < C · σR · · · · · · · · · · · (18)

where σR is the accuracy of the radar. C is
a gain parameter and controlled to be small
if the variance of particles is large, and to be
large if the variance is small, using a sigmoid
function and the variance of all the particles
σx as follows.

C =
c

1 + e−a(−σx+b)
+ d · · · · · · · · · · (19)

where a ∼ d are parameters of sigmoid func-
tion. In the following experiments, we set
a = 40, b = 0.14, c = 1.9, and d = 0.1, and C
is adjusted to vary from 0.1 to 3 according to
the variance of particles.

•N − P particles are selected among Xup
k ac-

cording to the likelihood.
( 4 ) Current particles Xk are replaced with N par-

ticles which are selected at Step (3).

3. Computer simulation

We conduct several computer simulations in order
to compare the performance of the proposed noise-
estimated particle filter, Kalman filter, and conventional
particle filters optimized for straight and curved paths.

3.1 Simulation condition We assume a radar
sensor is placed at the origin of the coordinate and set
the sampling interval as 0.5 [s], the accuracy of the radar
as 30 [m] in distance and 0.2 [deg.] in azimuth and el-
evation angles. The target starts to move from 70 [km]
apart from the radar toward the radar with a height of
10[km] and the velocity of 306 [m/s]. Two types of tra-
jectories including straight and curved paths are tested.
For a scenario of the straight path, the target moves

by the uniform linear motion between 0 to 150 [sec.].
For a scenario of the curved path, the target moves by
the uniform linear motion between 0 to 50 [sec.] and
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100 to 150 [sec.], and with the turning motion from 50
to 100 [sec.] during level flight. In this scenario, the
target turns 1 or 4 times on horizontal plane.
We runs Monte-Carlo simulation in 50 times and eval-

uates the RMS (Root Mean Square) error. Four types
of tracking filters are compared

( 1 ) Kalman filters which are adjusted to provide the
best performance at straight path

( 2 ) Kalman filters which are adjusted to provide the
best performance at curved path

( 3 ) Conventional particle filter
( 4 ) Proposed noise-estimated particle filter

The number of particles are 200 for conventional parti-
cle filter and 100 for noise-estimated particle filter, which
are determined experimentally.
3.2 Estimation of system and observation

noises Tracking results for the proposed noise-
estimated particle filter which estimates system and
observation noises are shown in Fig.1. In Fig.1,
KF Straight is the Kalman filter for straight trajectory,
KF Curve is the Kalman filter for curved trajectory, PF
is the conventional particle filter, and NPF QR is the
proposed noise-estimated particle filter. In addition, the
estimated system and observation noises for 4-turns tra-
jectory are shown in Fig.2.
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Fig. 1. Tracking error (system and observation
noises are estimated)

The smoothing performance of the proposed noise-
estimated particle filter (NPF QR) outperforms the
conventional particle filter (PF), and is similar to
the Kalman filter optimized for curved trajectory

S
y

st
em

 n
o

is
e

Time [sec.]

0

0.1

0.2

0

1

2

3

5

6

4

7

O
b

se
rv

at
io

n
 n

o
is

e

Turn

0       20       40      60       80      100     120     140     160

Fig. 2. Estimated system and observation noises
(4 turns)

(KF Curve). Though the Kalman filter optimized for
straight trajectory (KF Straight) shows the best perfor-
mance in straight path, it cannot track the target while
turning at all. In addition, though the tracking delay
is occurred for the Kalman filter for curved trajectory
(KF Curve) at 4-turns scenario, the accuracy of the pro-
posed filter is similar to the conventional particle filter
(PF). Consequently, it is confirmed that the proposed fil-
ter can be applied to various scenarios more adaptively
than other conventional filters.
3.3 Estimation of system noise Tracking er-

ror for the proposed filter which estimates the system
noise are shown in Fig.3. NPF Q indicates the proposed
noise-estimated particle filter.
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Fig. 3. Tracking error (system noise is estimated)

As shown in Fig.3, the tracking error for the straight
trajectory is considerably suppressed against the con-
ventional particle filter. Moreover, for the curved tra-
jectory in 4-turns scenario, the tracking performance of
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the proposed filter outperforms the conventional particle
filter.
However, the large delay occurred just after starting

turning motion temporarily and the transient response
is observed. This is because, after tracking in a straight
line for a while, Xdown particles are increased and the
system noise tends to be ignored, and thus the response
for the curved trajectory is delayed.

4. Conclusion

This paper proposed the new noise-estimated particle
filter for a target tracking system. The proposed fil-
ter estimates the system and the observation noises in
Kalman filter by using the particle filter and adapts the
abrupt changes of the target motion characteristics.
We examined the tracking performance of the pro-

posed noise-estimated particle filter by computer sim-
ulations for the radar tracking system, and confirmed
that the proposed filter has high smoothing performance
for the tracking error and high stability performance for
sudden changes of the target motions.
This paper focused on the radar-based target track-

ing, however, the applications of the proposed noise-
estimated particle filter is not limited to radar tracking
and we can apply the proposed filter for a variety of
vision-based tracking systems. We are going to apply
the proposed filter for, for example, pedestrian tracking
using distributed cameras and laser range finders in near
future.
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