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Abstract—This paper proposes a new method for mapping
a tissue surface model onto an arbitrary target surface while
preserving the geometrical features of the tissue surface. In our
method, firstly, the tissue model is roughly deformed by using
Self-organizing Deformable Model. Since the deformed model
may contain folded patches, the folded patches are removed.
Moreover, by Free-Form Deformation (FFD), and the area- and
angle-preserving mapping, the model is mapped onto the target
surface while preserving geometrical properties of the original
model. From several experimental results, we can conclude that
the proposed method can map tissue models onto arbitrary target
surface without foldovers.

I. I NTRODUCTION

Recent medical imaging devices can provide high resolu-
tion medical images. Tissue models generated by the images
are used in support systems for diagnosis and treatment [1].
One technique using the models is to find the relationship
and similarity between the models of a target tissue. Each
tissue has fairly consistent shape while the shape varies across
individuals. By analyzing many shape patterns of the tissue, a
statistical shape model (SSM) is build to identify the consid-
erable natural variability of the tissue. Because of the shape
prior information which SSM provides, recent works show that
SSM-based techniques have obtained considerable success in
the tissue detection from medical images [2].

The fundamental process for building SSM is to establish
the correspondence between the models. Generally, triangular
mesh models of the tissue have different number of vertices
and different topology. The correspondence problem becomes
complex in the case of the tissue with complex shape such
as the human brain. One solution for this problem is to map
the models onto a target surface with simple shape including
a plane and a sphere. Since the target surface is described by
a simple parametric function, such mapping-based approach
allows to easily determine the correspondences on the target
surface through the parameters in the function.

To achieve this, the mapping method needs to guarantee
one-to-one correspondence between the model and the target
surface while preserving the original geometric properties
as far as possible. To compare the models effectively, it is
desirable to control the mapping so that anatomical features
involved in the model are constrained to lie at specific loca-
tions on the target surface. Moreover, if the mapping deals
with arbitrary shape, the effective mapping of tissue models

is realized by selecting suitable target surface according to
the tissue shape. However, there are few mapping methods
satisfying the three requirements.

In this paper, we propose a new method for mapping a
tissue surface model onto an arbitrary target surface while
preserving the geometrical features of the original tissue
model. The proposed method uses Self-organizing Deformable
Model (SDM) [3], [4], which is a deformable model guided
by competitive learning and an energy minimization approach.
The SDM allows to move some vertices included in the SDM
toward specific points on the target surface and to choose
arbitrary shapes for both the SDM and target surface.

On the contrary, when the SDM is applied to the brain
surface model, multiple patches in the model may be projected
onto the limited area of the target surface. When the model
contain such overlap, called foldover, the mapping between
the model and the target surface is not bijective. To avoid the
foldover, the original SDM algorithm [3] introduces certain
techniques, however, does not necessarily guarantee foldover-
free mapping. Matsui et al. [4] incorporated Least-squares
Meshes (LSM) into the SDM algorithm. In the LSM method,
a matrix is employed to represent the point correspondence
between the model and the target surface. The model is
deformed by the inverse matrix. Since the matrix consists
of all vertices in the model, the computation of the inverse
matrix increases exponentially when the model has a large
number of vertices. Moreover, to perform LSM, a user needs
to specify point correspondences between the model and the
target surface. In case of the brain surface with complex shape,
many point correspondences are needed to avoid the foldovers.

To solve the problems, in our method, the tissue model
is roughly deformed by using the original SDM deformation,
and folded patches are removed from the deformed model.
Moreover, by Free-Form Deformation (FFD), and the area-
and angle-preserving mapping, the model is mapped onto the
target surface while preserving geometrical properties of the
original model.

II. T ISSUE MODEL MAPPING BASED ONSDM

This section explains the detail of the proposed mapping
method. Here, we describe several definitions used in our
method. Given a vertexvi, the 1-ring regionWi of vi is defined
by a set of the patchesw(i)

k (k = 1, 2, · · · , N (i)
p ) which have
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the vertexvi. N
(i)
p denotes the number of patches contained

in the 1-ring region.

A. Self-organizing Deformable Model

The SDM is a deformable mesh model represented by
triangular patches. A target surface is represented by a set of
points on the surface, called control points. Arbitrary shapes
can be chosen for both the SDM and target surface, and the
size of a target surface is sufficient to cover the initial SDM,
provided that the SDM and the target surface have the same
topological type. Feature vertices are the vertices which corre-
spond to specific locations on the target surface, and the control
points close to the locations are the corresponding points of the
feature vertices. In the SDM algorithm, a given mesh model
is deformed to fit to the target surface by competitive learning
and minimizing an energy function. See the ref [3] in detail
of the SDM algorithm.

B. Foldover removal

When a brain surface model is mapped onto a given target
surface by using the original SDM algorithm, the deformed
brain model may contain a foldover. The foldover is removed
based on the method proposed by Athanasiadis et al. [5]. Since
the method in [5] dealt with only a spherical surface as a target
surface. We extend the method in [5] to apply to target surface
with arbitrary shape.

The foldover occurs when a vertex is not included in
its 1-ring region. Considering this, the foldover is removed
by moving the vertices to within their 1-ring region. This
movement is made by moving each vertexvi forward the
location computed by

vi = ϕ
(∑

k A
(i)
wkC

(i)
k∑

k A
(i)
wk

)
(1)

whereA(i)
wk andC(i)

k is, respectively, the area and centroid of a
patchw(i)

k included in the 1-ring region of the vertexvi. The
function ϕ is used to map the moved vertex onto the target
surface. In our method, the vertexv is moved to the control
point p closest to the vertex, andϕ is formulated by

ϕ(v) =
∥p∥
∥v∥

v (2)

where∥y∥ is the norm of a vectory.

In the process of removing the foldover, all vertices are
moved by Eq.(1) and (2). The removal process is repeated
until all vertices are not moved.

C. Movement of feature vertices with Free-Form Deformation

By using the original SDM algorithm, feature vertices are
mapped to the locations of their corresponding points on the
target surface. However, in the foldover removal described in
Sec. II-B, all the vertices are moved to achieve foldover-free
deformation of the tissue model. After the removal process, the
feature vertices may be far from their corresponding points.
To correct the positions of the feature vertices, Free-Form
Deformation(FFD) [6] is used which deforms a mesh model
by deforming the space in which the model is embedded.
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Fig. 1. Movement of feature vertices using FFD.Red and blue points are the
feature vertex and its corresponding point.

The use of FFD enables the local surface deformation with-
out foldovers. Owing to this reason, the feature vertices are
efficiently moved to their corresponding points by applying
FFD with the local area where the feature vertices and their
neighbor vertices exist.

To apply FFD, for each feature vertexv∗, 3D control lattice
around v∗ and its corresponding pointp∗ is generated as
shown in Fig. 1. The local FFD coordinate system is defined
by three vectorsS,T ,U which are orthogonal each other. The
axisS is defined byS = l(p∗−v∗) (l : an odd number). The
axis T is the vector selected from the vectors orthogonal to
S. The axisU is obtained by the cross product ofS andT .
The magnitude ofT andU is set to(l − 1)(p∗ − v∗).

To facilitate manipulation of the FFD coordinate system,
the axesS, T, U are uniformly divided into a grid by the
distance betweenv∗ and p∗. The control lattice comprises
l grid points along theS axis, andl − 1 grid points along
the axesT andU (Fig. 1). The global coordinateK(a, b, c)
(0 ≤ a ≤ l, 0 ≤ b, c ≤ l − 1) of the (a, b, c)-th grid point is
given by

K(a, b, c) = X0 +
a

l
S +

b

l − 1
T +

c

l − 1
U (3)

whereX0 is the origin of the FFD coordinate system, and
its location is defined satisfyingv∗ = K(h, h, h) and p∗ =
K(h+ 1, h, h) (h = l−1

2 ) as follows:

X0 = v∗ − h
(1
l
S +

1

l − 1
T +

1

l − 1
U
)
. (4)

The local coordinate(s, t, u) of an arbitrary point̂v in the grid
is expressed by

v̂ = X0 + sS + tT + uU . (5)

Using the grid points,v∗ is moved to coincide with its
corresponding pointp∗. Since v∗ = K(h, h, h) and p∗ =
K(h+1, h, h), the movement is made by the FFD deformation
using onlyK(h, h, h):

K(h, h, h)←K(h, h, h) +
1

lB
S; (6)

B = I lh(sv∗)× I l−1
h (tv∗)× I l−1

h (uv∗); (7)

Imn (λ) =

(
m

n

)
(1− λ)m−nλn (8)

where (sv∗, tv∗, uv∗) is the location ofv∗ in the FFD coor-
dinate system. The movement using Eq.(6) causes the local
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deformation of the model included in the lattice concurrently.
The positions of the vertices in the lattice are updated by

v̂ =
∑
a

I la(s)
∑
b

I l−1
b (t)

∑
c

I l−1
c (u)K(a, b, c). (9)

The algorithm for moving the feature vertices is as follows:

[F1] For each feature vertices,
a) Generate the FFD coordinate system and the

grid points.
b) Move all vertices within the grid by Eqs. (6)

and (9).
[F2] Map the vertices on the target surface by Eq. (2).
[F3] If all feature vertices is satisfied with∥p∗ − v∗∥ <

τ (τ：threshold), the process is terminated. Otherwise
return Step.F1.

III. G EOMETRICAL FEATURE PRESERVING MAPPING

After the movement of feature vertices process, the tissue
model is deformed to preserve the original geometric proper-
ties as far as possible. This deformation is based on an area-
and angle-preserving mapping. The definition of each mapping
is described by the example of mapping one triangular mesh
model DW onto a given parameter domainΩ∗. Here, the
mapped model on the domainΩ∗ is denoted asD∗.

An area-preserving mapping is the mappingσ : DW → D∗

if the area of each patchAw in DW is the same as that of the
corresponding patchσ(Aw) in D∗. When the total area of
DW is the same as that ofD∗, the area-preserving mapping
is determined by minimizing the distortion metric of the area
[7]:

Ẽarea(σ) =
∑

w∈DW

(σ(Aw)−Aw)
2. (10)

However, in our method, the surface area of the modelDW is
not always equal to that of the mapped modelD∗. Instead of
Eq. (10), we define a objective function by

Earea(σ) =
∑

w∈DW

∣∣∣ σ(Aw)

Σw∈DW σ(Aw)
− Aw

Σw∈DWAw

∣∣∣ (11)

≈
∑
i

earea(i, σ); (12)

earea(i, σ) =∑
w

(i)
k ∈Wi

∣∣∣ σ(A
w

(i)
k

)∑
w

(i)
k ∈Wi

σ(A
w

(i)
k

)
−

A
w

(i)
k∑

w
(i)
k ∈Wi

A
w

(i)
k

∣∣∣. (13)

An angle-preserving mapping is the mappingσ : DW →
D∗ if the angle of each pair of intersecting arcs inDW is
the same as that of the corresponding arcs inD∗ [7]. In
our method, the angle-preserving mapping is determined by
minimizing the distortion metric of the angle:

Eangle(σ) =
∑
i

eangle(i, σ); (14)

eangle(i, σ) =
∑

w
(i)
k ∈Wi

3∑
d=0

|σ(θd
w

(i)
k

)− θd
w

(i)
k

|. (15)

temporal lobe central sulcus

Fig. 2. A simple brain surface:(left: front, middle: top, right: left side)

whereθdw is one angle of the patchw.

The distortion metricE is formulated as a linear combina-
tion of Earea andEangle:

E(σ) = µEarea + (1− µ)Eangle ≈
∑
i

e(i, σ); (16)

e(i, σ) = µψearea(i, σ) + (1− µ)eangle(i, σ) (17)

whereψ is a scaling factor to adjust the ranges of the two
metrics. When a weight coefficientµ (0 ≤ µ ≤ 1) increases,
the property of the distortion metricE change from angle to
area-preservation. Therefore, the area- and/or angle-preserving
mapping is determined by minimizing the distortion metric in
Eq. (16).

Applying a greedy algorithm with Eq.(17), the minimiza-
tion is the optimization problem of positioning the vertices in
the model by moving them repeatedly. Practically, for each
vertexvi, the suitable next position ofvi is selected from its
candidatesv(k)

i (k = 1, 2, · · · , N (i)
p ) obtained by

v
(k)
i = vi + α(u

(i)
k − vi) (18)

whereα (0 ≤ α < 1) is a coefficient, andu(i)
k is the vertex

connected tovi by one edge. To prevent the foldover, the
movement ofvi is limited within its 1-ring region. Among the
candidates,vi is moved to the candidate with minimum error
in Eq.(17).

The algorithm for area- and angle-preserving mapping is
as follows:

[A1] Choose randomly the vertex from all the vertices
except the feature vertices.

[A2] Compute the position candidates of the chosen vertex
by using Eq. (18).

[A3] Move the vertex to the candidate with minimum error
in Eq.(17).

[A4] If all vertices don’t moved, go to Step. A1. Otherwise,
go to Step. A5.

[A5] Map the vertices on the target surface by Eq. (2).

IV. EXPERIMENTS

To verify the applicability of our proposed method, we
made the experiments using 6 brain surface models and a
target surface shown in Fig. 2. The target surface, called a
simple brain, has the simplified shape of a human brain. In the
experiment, 11 feature vertices are selected from longitudinal
fissure of cerebrum, lateral sulcus and central sulcus. The
parametersτ in Step.F3 andα in Eq. (18) is set toτ = 0.01
andα = 0.1, respectively.
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(a) (b) (c) (d) (e)

Fig. 3. (a) brain surface model and (b-e) the resulting model by the proposed method: (b) the movement of feature vertices; (c) the area- and (d) angle-preserving
mapping; (e) the area- and angle-preserving mapping. Red and blue points are the feature vertices and their corresponding points. Green points denote the feature
vertices completely coincided with their corresponding points.

The mapping results of the brain surface model are shown
in Fig. 3. Fig. 3(b) show the resulting model by performing
the original SDM algorithm and the processes of removing
the foldover (Sec. II-B) and moving the feature vertices by
FFD (Sec. II-C). All the mapped brain models are completely
fitted to the target surface without foldovers. while locating
the feature vertices at their target position correctly. Our area-
and/or angle-preserving mapping is applied to the model in
Fig. 3(b). Fig.3(c) and Fig. 3(d) show the resulting models by
the mapping which preserve area and angle alone, respectively.
Fig. 3(e) shows the resulting model obtained by the distortion
metric (Eq.16) with the parameterµ = 0.5. In this case, the
mapping leads to the preservation of areas and angles.

To evaluate our area- and/or angle-preserving mapping,
we studied the error distrubtions in areas and angles by the
three types of the maapings. The error functionϵarea for area-
preservation is formulated by

ϵarea = S
Aw

σ(Aw)
+

1

S

σ(Aw)

Aw
− 2; S =

Σw∈Wσ(Aw)

Σw∈WAw
.

(19)
The error functionϵangle for angle-preservation is calculated
by the sum of the absolute difference between the angles of
the patches in the mapped model and the original. When the
values of the error functions are close to zero, the mappings
preserves their corresponding geometric properties. Fig. 4(a)
and (b) show the distributions ofϵarea andϵangle, respectively.
In these figures, three colors correspond to the setting of
µ: 0.0(red), 0.5(blue), and 1,0(green). Compared with the
distribution (black line in Fig. 4) using the model obtained
by FFD deformation Fig. 3(b), our mapping method (red, blue
and green lines) reduces the errors on areas and angles. In
the case ofµ = 1 (green line), our mapping is the area-
preserving mapping, and the distribution ofϵarea has the
highest peak at zero. The distribution ofϵangle becomes narrow
with decreasing the value ofµ. For µ = 0 (red line), our
mapping is the angle-preserving mapping. In this case, the
distribution ofϵangle is steep, and has the single peak at zero.
From these results, our method can achieve the preservation
of the geometrical features.

V. CONCLUSION

In this paper, we proposed the method of mapping of the
brain surface model with complex shape onto an arbitrary
target surface. The model is mapped roughly on the target
surface by SDM method. After removing the foldover, the local
surfaces including the feature vertices is deformed by FFD to
move the feature vertices to their corresponding points without
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(a) area error
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ty

Angle error

(b) angle error

Fig. 4. Error distributions in areas and angles by the proposed mapping
method. black: without geometrical process, red:µ = 0, blue: µ = 0.5,
green:µ = 1.

foldovers. Moreover, the model is deformed to preserve area
and angle before and after mapping. From the experimental
results, our method can map a brain model on a target surface
while both controlling feature vertices position and keeping
geometrical features without foldovers.
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