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Abstract— We proposed a teleoperation method, illusory con-
trol (IC), that provides a comfortable operation experience
using a seamless transition between real and pre-prepared
virtual environments. Therefore, the mobile robot with IC could
function solely in familiar environments. To make IC applicable
in unfamiliar environments, this study proposes a novel method,
instant IC, that eliminates the requirement for a pre-prepared
virtual environment. The proposed robot system can instantly
generate a virtual environment using actual 360° images of the
robot in motion, utilizing instant neural graphics primitives
and neural radiance fields. The 360° images allow the entire
surrounding environment to be virtualized without requiring
specific camera orientations. In addition, by optimizing the
density of neural radiance fields using depth estimation results
beforehand, the reconstruction accuracy at unknown poses
can be guaranteed. Furthermore, we propose a depth scaling
method based on the actual measurements obtained by LiDAR
to increase the consistency of virtual and real environments.
With this instant virtual environment, the proposed system
enables teleoperation in unknown environments via the seamless
transition between real and virtual environments. The exper-
imental results exhibit consistent and smooth back-and-forth
transitions between virtual and real space in mobile robot
teleoperation.

I. INTRODUCTION

Utilizing teleoperated mobile robots remotely operated
by humans has become auspicious owing to the dwindling
workforce and increasing remote work. A teleoperated robot
is generally equipped with a safety system in that it au-
tonomously detects obstacles using sensors such as LiDAR
and autonomously avoids them, in addition to its functions
operated remotely by a human. Accordingly, the framework
that enables a human and an autonomous agent to jointly
control a robot and effectively achieve specific tasks has been
researched and called shared control. When a human operates
a robot remotely using camera images from the robot,
the robot detects obstacles; however, the human does not
recognize these obstacles. Although relatively convenient, the
human feels substantial stress because they tend to feel that
the robot does not obey their command. This stress may
be caused by the discrepancy between the intentions of the
human operator and that of an autonomous agent, which may
trigger a decrease in the acceptance of the robot system.

To address the aforementioned problem, we proposed a
teleoperation method named illusory control (IC) [1] [2]. IC
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is a system that provides a comfortable operation experience
using a seamless transition between real and virtual environ-
ment spaces. IC facilitated a safe robot operation without
complications in avoiding obstacles because the operators
receive feedback images that allows them the satisfaction of
feeling that they are operating the robot according to their
intention by switching to the virtual space without obstacles.
However, IC was limited because the virtual space must be
prepared beforehand. For the system to work, a provider or
user of an IC system needed to visit the environment in which
the robot moves beforehand, and they needed to sense the
environment using a 3D scanner, etc., and post-process, such
as adjusting the appearance. Consequently, IC systems could
only function in familiar environments. Some applications
for a teleoperated robot are difficult to visit beforehand, such
as disaster responses. Therefore, the fact that the IC system
could only function in known environments severely limited
the applicability of IC techniques.

Here, we propose a novel method in which the virtual
space does not need to be prepared beforehand. Specifically,
we leverage the instant neural graphics primitives (NGP) [3]
technique, a method that is expected to achieve convergence
of neural radiance fields (NeRF) [4] training in a short time,
for the instant construction of virtual spaces. We propose
instant IC, a teleoperated robot system that adopts a seamless
transition between the virtual space constructed by instant
NGP and the real space. Furthermore, we propose a depth
estimation method to increase the reconstruction accuracy at
unfamiliar poses and a scaling method to fit the geometry
in virtual space with the real space. These methods help
increase the consistency of the appearance between the
virtual and real spaces.

The contributions of this study are as follows.

• The applicability of IC in unknown environments was
verified by using instant NGP that can construct a virtual
space instantly.

• We verified that a prior depth estimation improves
reconstruction accuracy in unknown postures.

• We verified that depth scaling based on actual measure-
ments from LiDAR sensors can improve the geometry
consistency between real and virtual space. Specifically,
this is a unique challenge for ICs that use seamless
transitions between real and virtual spaces.

The remainder of this paper is organized as follows.
Section II presents the related work. Section III describes
the background of IC and NeRF. Section IV describes the
proposed method, and the experiment is described in Section
V. Finally, Section VI concludes this paper. Hereafter, virtual



space is called v-sp and the robot in v-sp is called v-bot,
while real space is called r-sp and the robot in r-sp is called
r-bot.

II. RELATED WORKS

Conventional 3D reconstruction techniques include point
cloud-, voxel-, and mesh-based methods. The point cloud-
based methods cannot represent object surfaces; hence, it is
difficult for them to reconstruct a highly realistic 3D space
on their own. The voxel-based methods are also memory
inefficient and poor at reconstructing accurate geometry. The
mesh-based methods can accurately reconstruct geometry
and achieve highly realistic 3D space using texture. In fact,
we have adopted mesh-based methods [1] or added mesh-
based methods to propose methods [2] for similar v-sp
and r-sp appearances using CycleGAN [5]. However, it is
difficult to adapt them to IC, which attempts to circumvent
v-sp preparation beforehand because pre-processing time is
required to reconstruct a 3D model. In IC, considering the
need to switch between r-sp and v-sp in response to obstacles
with as little operator discomfort as possible, it is desirable
to construct a v-sp in a few seconds.

A 2D image-based 3D reconstruction method using neural
networks has been proposed [6], [7]. One approach is to
estimate depth from images [8]–[10]. These images are
highly realistic because they are based on actual images
and perform geometrical transformations based on posture.
Because these methods are image transformations based on
a single image, it is difficult to reconstruct a consistent
environment using images in several poses, especially for
large-scale spatial restoration.

Other approaches include simultaneous localization and
mapping (SLAM); in particular, dense SLAM should also
be able to achieve a highly realistic reconstruction [11],
[12]. These alternative approaches are expected to perform
dense and highly realistic 3D reconstruction in real-time. To
further improve higher realism, NeRFs have recently gar-
nered significant attention [4]. NeRFs utilize image-posture
pairs to train a neural network to perform free-viewpoint
rendering. NeRFs are also being studied for the consistent
and realistic reconstruction of relatively large outdoor envi-
ronments [13]–[15]. Furthermore, a method combined with
SLAM has also been proposed [16], [17]. In addition, a
method that considers rendering on mobile devices has been
proposed; hence, future developments can be expected to
work on inexpensive devices [18]. Recently, a method has
been proposed to increase the accuracy of reconstruction
in unfamiliar postures by optimizing with prior information
on the depth [19]. NeRF with 360° images has also been
proposed to enable the comprehensive reconstruction of the
environment from a small number of images, independent of
the posture at the time of capture [20]. However, the problem
with NeRF was the lack of actual learning and rendering
time. Instant NGP is a technique that enables the convergence
of learning in a significantly short time [3]. Instant NGP is
expected to reconstruct the v-sp to accommodate instant IC’s
requirements. Therefore, the leveraging of instant NGP could

be an effective improvement method to make IC preparation
unnecessary. In addition, from the aspect of instant NGP,
instant IC is an example of effective use of its technology’s
features.

III. BACKGROUND

A. Illusory Control

This section describes the teleoperation flow of a mobile
robot using the proposed IC.

First, the operator sees the camera image of the r-bot and
commences the operation with the r-bot as the control target.
The r-bot receives operation commands from the operator
and calculates its future trajectory based on these commands.
It then determines whether the calculated future trajectory
will reach the obstacle or not and, if it does, switches the
control target from the r-bot to the v-bot. At this point, the
system moves the v-bot to the same position based on the
position information of the r-bot, switches the image shown
to the operator to the v-sp, and then switches the control
target to the v-bot. Although the operator operates the v-bot,
the r-bot moves autonomously using the position and posture
of the v-bot as subgoals. If there are obstacles in r-sp at the
v-bot position, the future trajectory of the v-bot is calculated,
the cost on the trajectory is obtained, and the point where
the cost is below a certain level is set as the subgoal. The
robot system periodically acquires the position information
of each of the v-bot and r-bot, and when the difference in
their respective postures becomes less than a threshold value,
it switches the feedback image to the operator from the v-bot
to the r-bot and the control target from the v-bot to the r-bot.

Here, we have improved the part of the v-sp employed
in this teleoperation flow. Specifically, we propose a method
that does not require advanced preparation by immediately
constructing a v-sp using image and posture information
obtained while the robot is in operation.

B. NeRF

This section describes the issues addressed by the NeRF.
NeRF optimizes a function f(x, d) = (c, σ) representing a
3D scene, where x, d, c, and σ denote the 3D view position,
a view direction, a color, and the density, respectively.
Each parameter in NeRF is optimized using a multilayer
perceptron (MLP). The rendered color C(r) in some range
n− f on the camera ray r = o+ td can be defined as

C(r) =

∫ f

n

T (t)σ(r(t))c(r(t), d)dt,

T (t) = exp(−
∫ t

n
σ(r(s))ds) represents the probability

that the camera ray terminates at the object surface at t,
starting at the neighborhood boundary n. The estimated color
C is approximated as

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci,
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Fig. 2. Excerpt of the processing part of the image. In this figure, the depth images are adjusted brighter than the actual images to improve legibility.

where Ti = exp(−
∑i−1

j=1 σjδj) and δi = ti+1 − ti
represents the distance between two consecutive samples on
the ray r.

IV. METHOD

The data flow of the proposed method is presented at Fig.
1. The image data process provided to NeRF is presented at
Fig. 2. The data flow presented here is only the part related
to the construction and rendering of the v-sp; for the module
structure of the entire robot, kindly refer to [2].

A. Instant Training and Rendering

The process of constructing a v-sp using NeRF can be
divided into two main parts. The first is a learning process
in which r-sp image data obtained from the robot under
operation are collected and fed to NeRF. The second process
involves inputting the posture of the robot on the simulator
to NeRF using the learning results and rendering the images
seen from that posture.

The NeRF technology employed was instant NGP [3].
This method was adopted because it is expected to achieve
learning convergence in a short time, and real-time rendering
at approximately 10 fps is feasible by adjusting the rendering
quality. Our previous method required advanced preparation
of the v-sp, thereby resulting in a significant time difference
between the current time and the time required to create the
v-sp. The proposed method can absorb temporal alterations
in the environment, except for dynamic obstacles such as
humans, because the temporal difference between the r-sp
and v-sp at the time of creation can be maintained from a
few seconds to a few dozen seconds.

First, we describe the process of acquiring data from
the robot under operation and creating data to be fed to
NeRF. Two types of data are acquired from the robot during
operation: image and robot-posture information. This infor-
mation is periodically sent to the computer that constructs
the v-sp using the communication protocol of the ROS
(Robot Operating System). Upon receiving this information,

the computer preprocesses the depth estimation and depth
scaling described below and then creates and stores the data
to be given to NeRF.

The image information used to train NeRF is a 360° image
transformed into a total of six perspective images at 90°
horizontally and 90° vertically. By employing 360° images,
the v-sp can be constructed such that the robot’s field of
view is not limited by its orientation during data acquisition.
When the robot moves a certain distance, the training images
are replaced with the latest ones. The posture information
used to train NeRF is the robot’s posture on the map frame.
Specifically, a map frame was constructed while performing
SLAM using LiDAR and the robot’s wheel odometry, and
the posture information for this map frame was adopted. The
Gmapping algorithm was employed for SLAM.

Next, the rendering process was simultaneously conducted
with instant NGP training. The input was the posture infor-
mation obtained from the robot on the simulator operated
by the operator. The operator was presented with the results
rendered by instant NGP as feedback during the operation
of the v-bot.

B. Prior Depth Estimation

If training and rendering are performed by simply pro-
viding NeRF with the aforementioned image and posture
information, the rendering accuracy for unknown postures
will be extremely low. Because the concept of instant IC
is to circumvent advance preparation, image information
for postures unfamiliar to the robot cannot be obtained
beforehand. Therefore, images and postures obtained from
the current robot can be employed; however, images and
postures at future assumed positions cannot be adopted.

To address this problem, DS-NeRF [19] presented an
approach that can render good quality images from a small
number of images by providing prior information on the
depth. Based on this approach, we attempted to provide prior
information on depth. Specifically, NeRF datasets were pro-
vided images with pre-estimated depths using the SliceNet



[10] algorithm, which can perform direct depth estimation
on 360° images (equirectangular). SliceNet was selected
because it can achieve depth estimation for 360° images and
exhibits the fastest depth estimation time among any of them.
Because SliceNet is a supervised learning technique, it is
necessary to construct and train a dataset in an environment
where depth information is available beforehand. However,
this method adopts only the pre-trained model published by
the authors of SliceNet, and no additional training, such
as fine-tuning, was performed in the current experimental
environment.

C. Depth scaling
Depth scaling was conducted on the pre-estimated depth

images using the actual LiDAR measurements. Because the
depth pre-estimation employed with SliceNet is based on a
pre-trained model, adopting it as it is in the actual operating
environment will trigger a discrepancy in the scale of depth.
Because IC is required to switch seamlessly between r-sp
and v-sp, any discrepancy between the scale of the actual
environment and that of the model will cause feedback
as if the posture is significantly off when the image is
switched between r-sp and v-sp. Therefore, we scaled the
pre-estimated depth image using the measured values from
a range sensor such as LiDAR. Specifically, we scaled the
depth image, such that the maximum value of the point
cloud information obtained from the range sensor matches
the maximum value of the depth image.

The scaled depth Dic is expressed as

Dic =
dmaxl

dmaxs

Ds

where dmaxl
and dmaxs

represent the max depth values
from the range sensor scan and depth map Ds estimated by
SliceNet, respectively. Note that dmaxl

and dmaxs denote the
maximum values at the 99.5% confidence interval accounting
for outliers.

This is expected to reduce the posture shift when the image
switches between r-sp and v-sp.

V. EXPERIMENT

Instant construction and teleoperation experiments of a v-
sp with instant IC were conducted using an actual mobile
robot. The mobile robot was a crawler robot manufactured by
Ricoh. Ricoh Theta Z1 and Velodyne LiDAR VLP-16 were
utilized as sensing devices mounted on the crawler robot. A
desktop computer with an Intel Core i9 CPU and NVIDIA
RTX 4090 GPU was employed for the v-sp construction and
teleoperation client.

We aimed to answer the following six questions:
• Can instant IC ensure equivalent reconstruction accu-

racy when compared to conventional IC, which requires
pre-preparation of the v-sp?

• How much pre-preparation time is required to build a
v-sp using instant IC?

• Do the prior depth estimation and depth scaling con-
tribute to ensuring the appearance consistency between
v-sp and r-sp?

• Can instant IC allow the teleoperation of a mobile robot
using a transition between v-sp and r-sp?

• Are there any differences in impressions of the system
when compared to instant IC and conventional IC?

• Can instant IC ensure reconstruction accuracy in mul-
tiple indoor environments?

A. Reconstruction Accuracy

In this experiment, we compared the reconstruction ac-
curacy between conventional IC [1] [2] and instant IC.
Conventional IC requires a v-sp to be constructed beforehand
using a 3D scanner and the CycleGAN to adjust appearance.
Instant IC is the proposed method.

For the instant IC, a v-sp was constructed using the
proposed method based on 360° images obtained from the
robot. Only one image obtained at the robot’s initial position
and the robot’s posture at that time were used for the images.
We evaluated the degree to which the reconstruction accuracy
transitions when the robot moves away from the point where
the last image was acquired.

Fig. 3 illustrates the transitions of the peak signal to noise
ratio (PSNR) and structural index similarity (SSIM) when the
robot moved straight ahead from its initial position. Fig. 4
illustrates the transitions of PSNR and SSIM when the robot
curves forwarding in the corridor in Fig. 9. Each movement
trajectory is presented on the left side of Fig. 3 and 4. The
qualitative results of the rendering comparing IC and instant
IC are also presented in Fig. 7.

Focusing on SSIM, it infers that instant IC scores higher
than conventional IC in the interval of approximately 2 m
from the initial position in the straight and approximately
1–2 m for the curve.

In other words, for a movement range of approximately 2
m, IC can be applied with high reconstruction accuracy by
constructing a v-sp based on one-shot images using instant
IC. In addition, the curving case demonstrates that the v-
sp construction with 360° images allows the reconstruction
accuracy to be maintained even if there is movement in the
turning direction.

This experiment was a v-sp construction using only images
obtained in the initial posture of the robot to understand the
capabilities of instant IC. In an actual teleoperation system
with IC, images are acquired, and the v-sp is reconstructed
every time the robot moves a certain distance; hence, the
reconstruction accuracy does not continue to decrease as the
robot moves, as illustrated in Fig. 3 and 4.

B. Training Time

The time required to learn NeRF was evaluated using the
proposed method. Fig. 5 presents the transition of PSNR
and SSIM when the v-sp construction using the proposed
method commenced with a single 360° image of the robot
in its initial posture and drawn in its initial posture.

For both PSNR and SSIM, the scores converge at approx-
imately 3–4 s after learning commences. In other words, if a
learning time of approximately 3–4 s is provided beforehand,
a v-sp with high reconstruction accuracy can be fed back
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to the operator. Given the teleoperation by IC, the operator
will operate the system while seeing images in r-sp until
they encounter an obstacle; hence, it is hypothesized that
a situation may not emerge so much where the operator is
made to wait for the v-sp to be constructed.

C. Ablation Study

The ablation experiment was conducted to evaluate the
effects of a prior depth estimation (Ours (-depth)) and depth
scaling (Ours (-scale)). Fig. 6 illustrates the evolution of
PSNR and SSIM when moving straight down the corridor
from the initial position where the image that functions
as the training data was acquired. It appears that Ours (-
scale) has the best score in all intervals, although there are a
few fluctuations in the scores. However, when observing the
rendering results, it appears that without scaling, the actual
geometry of the environment is not correctly represented.
Fig. 8 qualitatively presents the results of rendering via
the proposed method using the posture from which the
ground truth image was obtained as input. Ours (-depth) has
already passed through the mobile environment in 3⃝ and 4⃝.
Furthermore, Ours (-scale) has roughly reached the end of the
mobile environment at 4⃝. Although there is room for further
improvement in the reconstruction accuracy, compared to
the above two, Ours appears to be able to reflect geometric
information in r-sp.
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Ours (-depth) is the proposed method without the prior depth estimation.
Ours (-scale) is the proposed method without the depth scaling. Ours is the
proposed method with the prior depth estimation and the depth scaling.

D. Teleoperation Experiment

Fig 9 presents the results of a comprehensive teleoperation
experiment using instant IC. A white obstacle, which is
difficult to recognize from the image, is placed in front of
the robot in its initial position. When the robot approaches
an obstacle, the feedback image to the operator switches
to that of the v-sp, and the operator’s operation target
switches to the v-bot (Fig. 9 2⃝). In Fig. 9 2⃝- 4⃝, the
operator operates the v-bot while the robot avoids obstacles
by autonomous movements while seeing the images in the
v-sp. When the difference in posture between the v-bot
and r-bot falls below a certain value, the feedback image
to the operator switches to that of the r-sp, and the robot
operated by the operator switches to the r-bot (Fig. 9 5⃝).
The aforementioned operation flow is the same as that for
conventional ICs; however, with instant IC, it was verified
that this flow could be achieved without preparing a 3D
model beforehand. In particular, some roughness emerged in
the reconstruction accuracy of areas that were not obtained
from the image data, such as the door visible on the right
side of the corridor. Improving the reality of these areas is
an issue for the future.
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Fig. 7. Qualitative results of the reconstruction accuracy. In conventional
IC, the v-sp is constructed by 3D scanner (FARO Focus3D). 1⃝– 4⃝ show
time-series changes, with the younger numbers indicating earlier times.

E. User Study

We conducted a user study to verify whether there were
differences in impressions of the system operating the robot
between conventional and instant IC. The five participants
were university researchers specializing in robotics. They
participated in the study regardless of their remote control
skills and were not compensated. The experiments were
approved by the Ethics Review Committee of the Graduate
School of Information Science and Electrical Engineering,
Kyushu University.

We employed qualitative semi-structured interviews to
assess the impressions of the system in terms of realism
and usability. This approach was chosen because concerns
regarding realism and ease of use differ among individuals,
making it challenging to identify these aspects solely through
standardized multiple-choice questions. Participants were
instructed to remotely control the robot in the environment,
as illustrated in Fig. 9, navigating around two obstacles using
the controller while viewing images displayed on the desktop
application via both conventional IC and instant IC. The
visual effect on V-bot deceleration, as described in [2], was
not implemented in order to evaluate the pure impression of
the v-sp appearance. To create variations in the timing of the
transition to v-sp, obstacles were placed in different positions
for each participant. This allowed for diverse movement
distances from the training image acquisition position and the
elapsed time since the training’s start, thus providing varia-
tions in reconstruction accuracy when transitioning to v-sp
during the instant IC experiment. Participants were required
to experience at least one set of transitions between r-sp and
v-sp in each trial. The experimental order of conventional

Ground truth Ours (-depth) Ours (-scale) Ours

1

2

3

4

Fig. 8. Qualitative results obtained from the ablation study. 1⃝– 4⃝ show
time-series changes, with the younger numbers indicating earlier times.

IC and instant IC was alternated for each participant. During
the trial, they were not informed whether the conventional or
proposed method was being used. After allowing participants
to freely experience teleoperation using both conventional IC
and instant IC for approximately 2-3 minutes each, they were
asked to respond to the following questions:

• Appearance: Which did you find the more realistic
appearance, conventional IC or instant IC?

• Usability: Which did you find easier to operate, con-
ventional IC or instant IC?

Using the aforementioned questions as a starting point,
the interviews proceeded by inquiring why participants felt
the way they did. The user study’s results showed that for
appearance, instant IC received three votes while conven-
tional IC garnered two. In terms of usability, instant IC and
conventional IC each received two votes, with one participant
considering them equivalent. Below are some comments
gathered from the interviews:

• Conventional IC appeared to exhibit a different coloring
than the r-sp, whereas the instant IC appeared more
realistic.

• In the instant IC, the large noise in the image was
observed, whereas in the conventional IC, the bound-
aries of doors and walls could be clearly identified.
Consequently, it was easier to recognize robot’s position
within the image using the conventional IC.

• Both conventional IC and instant IC have an appearance
that is easy to operate.

• In conventional IC, the obstacles present in r-sp disap-
peared in v-sp, while in instant IC, the obstacles were
carried over from r-sp to v-sp, providing a sense of
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consistency.
In instant IC, some participants appeared to feel that the

appearance was incomplete. Examples of transitions and less
accurate transitions with relatively precise v-sp reconstruc-
tions are shown in Fig. 10. Others believed that instant IC
seemed more realistic when the operation in v-sp commenced
at a location close to where the training data were collected.
As demonstrated in the learning time experiment, instant IC
required a training time of 3-4 seconds. Ideally, learning
should converge at the point of transition to v-sp, so the
design acquires data at fixed movement intervals; however,
depending on the timing of the transition to v-sp, it may
not provide sufficient realism. Moreover, even with adequate
training time, when the operation began in v-sp at a distance
from where the training data were obtained, participants
seemed to perceive degradation, such as blurring, from the
r-sp image.

Instant IC can accommodate changes in the environment,
such as the emergence of obstacles, because the virtual space
was created only several seconds prior. In this regard, some
participants felt that instant IC operated more consistently.
Adapting to environmental changes in a virtual space is an
essential aspect of IC. As previously mentioned, as long
as realism can be enhanced, instant IC can offer a more
consistent operation.

Just after 
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Worse case

Just before 

the transition to v-sp

Just after 

the transition to v-sp

Just before 

the transition to v-sp

Fig. 10. Examples of transitions and not-so-accurate transitions with
relatively accurate reconstruction of v-sp in the user study.

F. Qualitative results in multiple indoor environments

In this experiment, the reconstruction was evaluated in
various indoor settings. Images were captured at the robot’s
initial position and utilized for training. After sufficient
training, the posture reconstruction was then qualitatively
assessed as the robot navigated through an indoor environ-
ment. The results of the experiments conducted in two indoor
environments are displayed in Fig. 11.

In relatively small and simple indoor environments, such
as corridors, the proposed method can successfully replicate
real spaces. However, in some cases, it does not perform well
in open indoor environments. Depth estimation and scaling
struggle in settings where windows are closely spaced, as
depicted in the left column of Fig. 11, and in complex
environments with no windows but featuring intersecting
corridors, as seen in the right column of Fig. 11. Enhancing
estimation accuracy to ensure that the method functions
correctly in all indoor environments without prior preparation
remains a future challenge.

VI. CONCLUSION

Here, we proposed a novel method, instant IC, to elimi-
nate the need for the advanced preparation of v-sp in IC.
Specifically, we employed instant NGP, a method that is
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Fig. 11. Qualitative results of instant IC in multiple indoor environments.
The example on the left is of an indoor environment with a view of the
exterior beyond the window. The example on the right is of an intricate
environment with no windows but with intersecting corridors. 1⃝- 5⃝ show
time-series changes, with the younger numbers indicating earlier times.

expected to learn NeRF in real-time, to construct the v-
sp instantaneously. We also proposed a method to improve
the rendering accuracy in unfamiliar postures by performing
prior depth estimation on images, including a method to
improve the agreement with actual geometry by performing
depth scaling to the r-sp using measured values from LiDAR.
Using these proposed methods, we constructed an instant IC
system that switched between the v-sp created by instant
NGP and images in the r-sp, evaluated the reconstruction
accuracy and training time, verified its operation using a
crawler robot, and conducted the user study.

Building a technique to interpolate the appearance of areas
with missing data is a future task. Possible approaches to
solving this issue include using a generative model, such
as inpainting, for interpolation [21], [22], ignoring whether
it matches the actual visibility, or planning autonomous
movement such that it actively acquires areas where data
are insufficient [23].
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