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Abstract—This paper proposes a new radar tracking filter
named Noise-estimate Particle PHD Filter (NP-PHDF). Kalman
filter and particle filter are popular filtering techniques for target
tracking. However, the tracking performance of the Kalman filter
severely depends on the setting of several parameters such as
system noise and observation noise. It is an open problem how
to choose proper parameters for various scenarios, and they are
often regulated in trial-and-error manner. To tackle this problem,
Noise-estimate Particle Filter (NPF) has been proposed so far.
The NPF estimates proper noise parameters of a Kalman filter
on-line based on a scheme of particle filter. In this paper, we
extend the NPF so that it enables to track multiple targets
simultaneously by combining with Probability Hypothesis Density
(PHD) filter, and propose a new Noise-estimate Particle PHD
Filter (NP-PHDF). Simulation results show that the proposed
filter has higher tracking performance in various scenarios than
conventional Kalman filter, particle filter, and PHD filter for
multiple-targets tracking.

I. INTRODUCTION

Target tracking is a fundamental technique in not only
computer vision but also various application fields. For ex-
ample, in air traffic control by a radar sensor, multiple high-
speed flight vehicles must be tracked simultaneously without
lost-tracking while estimating their velocities and heights.
However, in general, radar data is severely corrupted by noise
due to atmospheric conditions or radar reflection property of
the target, and it is still challenging to track targets stably under
severe noisy condition.

For target tracking, a time series filter is very effective to
suppress noise in sensory data and track targets smoothly and
stably. In a time series filter, the current target position, which
is estimated based on past observation and a motion model,
are merged with current observation and the optimum position
is derived. Especially, the time series filter which removes the
noise component in the radar data and estimates the current
position and velocity of the target is called ”tracking filter”.

Kalman filter is the most popular and widely-used tracking
filter and has been applied to various applications so far. Based
on the assumptions on linear and Gaussian noise in sensory
data, this filter estimates the statistically-optimized state of the
target. Uniform linear motion is usually adopted as a motion
model in simple Kalman filter. In case that target motion does
not follow the uniform linear model, a system noise parameter
which should be adjusted beforehand to absorb the system
error affects the tracking performance severely. However, it is
an open problem how to choose a proper value of the system
noise parameter beforehand for various scenarios such as non-
linear motion or rapid acceleration/deceleration. In addition, an
observation error which represents the accuracy of sensor/radar
and has to be adjusted beforehand affects the performance of

the Kalman filter, too. The observation model is also difficult to
be set appropriately for various targets with a variety of shapes,
motion directions, heights, distances, etc. Currently, a target
tracking system based on Kalman filter has to be designed
with proper system parameters in a try-and-error manner to
meet the desired performance [1].

In few decades, particle filter has been attracting much
attention as a high-performance tracking filter. In particle
filter, instead of estimating the probability distribution of the
object state from the past observation and motion model in a
parametric way, the probability distribution is represented by a
set of particles. Each particle has a weight which represents the
probability of the state of the particle. The particle is updated
and re-sampled according to the Bayesian recursion equation.

Particle filter has been applied to various applications such
as human tracking, state estimation, etc. [2], [3], [4], [5], [6],
[7], [8]. Particle filter does not depend on the assumption
of linear or Gaussian noise, and is able to be applied for
various systems even with non-linear and non-Gaussian noise.
However, the particle filter is less effective than the optimized
Kalman filter for a target moving by a motion model, and
the improvement of the tracking performance for various
conditions is an open problem in particle filter.

We have proposed a tracking filter named noise-estimate
particle filter (NPF) [9], which combines Kalman filter and
particle filter. As mentioned above, Kalman filter is an op-
timum filter in case that the motion model of targets and
observation model of sensor/radar are correctly provided. In
NPF, instead of estimating the state of the target such as posi-
tion or velocity directly, the system error and the observation
error are estimated on-line by particle-filter based approach.
More correctly, the state of the target is estimated based on
Kalman filter, and its motion noise and observation noise are
optimized by particle filter. Since the critical parameters of the
Kalman filter are adjusted on-line according the observation,
the proposed filter can be applied for a variety of target motions
including not only uniform linear motion, but also sudden
motion changes such as abrupt acceleration/deceleration or
steep turn. However, the NPF is limited to a single target
tracking and cannot be applied to multiple target tracking
problem directly.

In this paper, we extend NPF so that it enables to track
multiple targets simultaneously, and propose a new tracking
filter named Noise-estimate Particle PHD Filter (NP-PHDF).
Probability Hypothesis Density (PHD) filter is a multiple-
target tracking filter proposed by Vo et al.[10],[11]. In this
filter, multiple state spaces for multiple targets are combined
to a single state space, and their probability distributions are
expressed by a set of particles. Based on PHD filter, NPF
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is extended so that it can track multiple targets stably by
estimating optimal parameters of Kalman filter for individual
target, and a new Noise-estimate Particle PHD Filter (NP-
PHDF) is introduced in this paper. The performance of the
proposed NP-PHDF is verified through computer simulation
for multiple-target tracking problems.

Some authors proposed combination filters of particle filter
and Kalman filter[12], [13], [14], [15]. Rao-Blackwellized
Particle Filters [14] is the most popular technique in SLAM
(Simultaneous Localization and Mapping). Localization and
mapping procedures are separated in this filter and imple-
mented using particle filter and Kalman filter, individually.
Marginalized Particle Filter proposed Schon et al. [15] sep-
arates linear and nonlinear parts in the control system and
assigns Kalman filter and particle filter separately. However, to
our best knowledge, the proposed filter which utilizes particle
filter for estimating the parameters of optimum Kalman filter
has not been proposed so far. Satoh et al. [13] proposed a color-
based tracking technique using Kalman Particle Filter [12]. As
the noise-estimate particle filter proposed in the paper, the state
of each particle is updated by Kalman filter. In their method,
however, the observation noise is determined according to
the weight of the particle and the state noise is determined
previously.

II. NOISE-ESTIMATE PARTICLE FILTER (NPF)

In the noise-estimate particle filter (NPF)[9], a number
of Kalman filters with a variety of sets of parameters runs
simultaneously in a parallel way. As conventional particle filter,
particles are re-sampled according to the errors between the
estimated and observed states. By evaluating the performance
of a number of Kalman filters with a variety of motion and
observation parameters estimated adaptively, optimum target
tracking which has similar high performance as optimized
Kalman filter for a fixed condition is achieved for various
motion patterns including uniform linear motion, abrupt ac-
celeration/deceleration or steep turn.

A. Model definition

In NPF, each particle executes a similar process as Kalman
filter individually. Firstly, a state space model for a target
system is defined in each particle.

xi
k+1 = Φkx

i
k +wi

k (1)
zik = Hxi

k + vi
k (2)

Eq.(1) is a motion model which represents a state transition
and Eq.(2) is an observation model which shows the relation
of estimated and observed states. xi

k is a state vector which
contains position and velocity terms. Φk is a state transition
matrix and, in this paper, the uniform linear motion is assumed
in all particles as follows.

Φk =

(
I ΔtI
0 I

)
(3)

where Δt is a sampling interval, I is an identity matrix, and
H = (I 0) is an observation matrix. wi

k is a vector of system
noise with an average 0 and an error covariance matrix Qi

k,
respectively. vi

k is also a vector of observation noise with an
average 0 and an error covariance matrix Ri

k.

B. Tracking process

A set of particles at time tk is defined as Xk ={
xi
k, w

i
k, q

i
k, r

i
k

}N

i=1
. Here, xi

k is a hypnosis for a state vector
of position and velocity, wi

k is a weight of each particle, and
qik and rik are system and observation noises at each particle,
respectively.

1) Produce N initial particles X0 =
{
xi
0, w

i
0, q

i
0,

ri0
}N

i=1
. The position, velocity, and system and ob-

servation noises are set with random numbers in
particular ranges.

2) Execute step (a) to step (f) at time tk (k = 1, · · · , T )
(a) Estimation
Execute prediction procedure in each particle by
Kalman filter and estimate the current state from the
previous state and the motion model.

xi
k|k−1 = Φkx

i
k−1|k−1 (4)

Pi
k|k−1 = ΦkP

i
k−1|k−1Φ

T
k +Qi

k (5)

where xi
k|k−1 is an estimated state in each particle

and xi
k−1|k−1 is a previous state at time tk−1. Pi

k|k−1
is an error covariance matrix in each particle and
Pi

k−1|k−1 is an previous error covariance matrix at
time tk−1.
An error covariance matrix of system noise Qi

k at
time tk is obtained as follows.

Qi
k = diag

{
qik,x

2
, qik,y

2
, qik,z

2
}

(6)

(b) Smoothing
To fit the estimated state with the current observation
and estimate more accurate state, smoothing process
in Kalman filter is applied in each particle.

xi
k|k = xi

k|k−1 +Ki
k[zk −Hxi

k|k−1] (7)

Pi
k|k = (I−Ki

kH)Pi
k|k−1 (8)

Ki
k = Pi

k|k−1H
T [HPi

k|k−1H
T +Ri

k]
−1 (9)

where xi
k|k is the estimated state of the particle at

time tk, Pi
k|k is the estimated error covariance matrix

in each particle, and Ki
k is a gain matrix.

The error covariance matrix of observation noise Ri
k

at time tk is obtained as follows.

Ri
k = diag{rik,x

2
, rik,y

2
, rik,z

2} (10)

(c) Likelihood calculation
The likelihood p(zk|xi

k|k) at each particle is calcu-
lated as follows.

p(zk|xi
k|k) =

1√
2πσ2

s

exp

(−d2i
2σ2

s

)
(11)

where σs is a parameter to evaluate the accuracy of
the hypnosis, di is an Euclidean distance between the
position component in xi

k|k and the observed position
zk. In the following experiments, we set σs = 300.
Next, the weight of each particle is updated according
to the obtained likelihood as follows.

wi
k = wi

k−1p(zk|xi
k|k) (12)
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In addition, the sum of the weight of all particles is
calculated by Wk = ΣN

i=1w
i
k and the weight of each

particle is normalized as wi
k = wi

k/Wk.
(d) State estimation
Estimated state x̂k at time tk is calculated by the
weighted mean of N particles.

x̂k ≈
N∑
i=1

wi
kx

i
k|k (13)

(e) Resampling
Particles are re-sampled according the the probability
proportional to the weight value wi

k. As a result,
particles with lower weight are removed and ones
with higher weight are increased.
(f) Update
In contrast to updating position and/or velocity in
a conventional particle filter, random offset values
obtained with a normal distribution are added to
the system noise qik and the observation noise rik,
respectively.

qik,s = qik,s +Δqik,s (14)

rik,s = rik,s +Δrik,s (15)

where s ∈ {x, y, z}, and Δqik,s and Δrik,s are
determined according to the normal random number
with an average of 0 and a variances of σq,s and
σr,s, respectively. σq,s and σr,s are predetermined
parameters, and in the following experiments, we set
σq,s = 0.1 and σr,s = 5 for all s ∈ {x, y, z}.

III. NOISE-ESTIMATE PARTICLE PHD FILTER
(NP-PHDF)

Probability Hypothesis Density (PHD) filter is a multiple-
target tracking filter proposed by Vo et al.[10],[11]. In this
section, we introduce a basic procedure of PHD filter and pro-
pose a new noise-estimate particle PHD filter which combines
PHD filter and NPF mentioned above.

A. Probability Hypothesis Density (PHD) filter

Let a set of particle at time tk be Xk =
{
xi
k, w

i
k, j

i
k

}Lk

i=1
.

Here, xi
k is a hypnosis for a state vector of position and

velocity, wi
k is a weight of each particle, and jik is the

label indicating which trajectory the particle is assigned to at
previous time.

At time tk(k > 0),

1) Estimation: Particles at current time tk are up-
dated by

xi
k = Φkx

i
k−1, i = 1, 2, · · · , Lk−1 (16)

Where Lk−1. is the number of particles at the
previous time. In addition, new Jk particles are
produced at each time so that it can track new
targets. Jk is determined as

Jk = α

∫
PB(x)dx (17)

α is a number of particles assigned for single
target and PB is the probability of occurrence of

a new target. In addition, the weight wi
k and the

label jk is set as follows.

wi
k =

1

α
(18)

jik = 0 (19)

for i = Lk−1 + 1, · · · , Lk−1 + Jk.
2) Likelihood calculation: The weight of each parti-

cle is calculated according to the following equa-
tion.

wi
k = wi

k−1

(
1− PD(xi

k)

+

Mk∑
m=1

PD(xi
k)L(z

m
k | xi

k)∑Lk−1+Jk

n=1 PD(xn
k )L(z

m
k | xn

k )w
n
k−1

)

(20)

Where wi
k is the weight of the particle i at time

tk and zmk is an observed value of mth target
(m = 1 ∼ Mk). PD(xi

k) is the probability for a
particle xi

k to detect the target.
3) Resampling: Particles are re-sampled according

the the probability proportional to the weight
value wi

k. In PHD filter, the sum of the weights
in a certain area indicates the expectation of the
number of targets Nk in this area. With this
expectation, the number of particles Lk at the next
period is determined as follows.

Nk =

Lk−1+Jk∑
n=1

wn
t (21)

Lk = αNk (22)

4) Update: Noises are added to the position and the
velocity in each particle.

5) Clustering: Apply clustering algorithm and deter-
mine the index of the cluster cnk which the particle
belongs to.

[{xi1
k , ci1k }Lk

i1=1}] = Clustring(xi1
k ) (23)

6) Labeling of clusters: Calculate the correlation
with the existing clusters of trajectories.

Id(i1) = argi2 max{SumWgt(i1, i2)} (24)

Where i2 = 1, · · · , rmax and SumWgt(i1, i2) is
a sum of likelihoods in particles of j = i2 among
the whole particles belonging to the cluster i1.

7) Correlation calculation: For all clusters,
if Id(i1) = 0

New trajectory
r = rmax + 1
rmax = rmax + 1
ks = k
Id(i1) = r

else
Copy Id(i1) corresponding to x̂i1

k from ℵk−1

to ℵk. ℵk is a set of observed trajectories.
8) Delete trajectories: The trajectory which existed

at ℵk−1 but not observed at time tk is deleted.
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B. Noise-Estimate Particle PHD filter

We introduce a new noise-estimate particle PHD filter
which combines a noise-estimate particle filter and PHD filter.
In this filter, a particle holds state sik = {xi

k, w
i
k, j

i
k,q

i
k, r

i
k}

at time tk. jik is a label indicating the trajectory which the
particle is assigned to. qi

k and rik are the system noise and the
observation noise, respectively.

In each particle, the position and the velocity of a target
are estimated through a same procedure as the noise-estimate
particle filter. At the same time, the correlation to the tra-
jectories is also estimated in a framework of the PHD filter.
The flowchart of the proposed noise-estimate particle filter and
PHD filter is shown in Fig. 1.

At time tk(k > 0),

1) Estimation: Particles are updated according to
Eqs. (4) and (5) by the noise-estimate particle fil-
ter. At the same time, new particles are produced
according to Eqs.(17) ∼ (19) by PHD filter.

2) Smoothing: Smoothing process in Kalman filter is
applied in each particle according to (7) ∼ (9).

3) Likelihood calculation and resampling: The
weight calculation and resampling are performed
according to Eqs.(20) ∼ (22)

4) Update: Random noise is added to the system and
observation noises in each particle as the noise-
estimate particle filter.

5) Clustering, labeling and correlation calculation:
Each procedure in PHD filter is applied.

6) Repeat 1) ∼ 5).

Set noise patameters for 

kalman filters randomly

Estimation
Partiles are updated

Smoothing

Kalman filter is applied

Likelihood calculation

Resampling and update 

Clustering (PHD filter)

Labeling of clusters
Correlation calculation
Delete trajectories

Fig. 1. Flowchart of Noise-Estimate Particle PHD filter

IV. COMPUTER SIMULATION

We conduct several computer simulations to compare the
performance of the proposed noise-estimate particle PHD filter
(NP-PHDF), noise-estimate particle filter (NPF)[9] Kalman
filter, and conventional particle filters optimized for straight
and curved paths.

A. Performance of single target tracking using noise-estimate
particle filter (NPF)

We assume a radar sensor is placed at the origin of the
coordinate and set the sampling interval as 0.5 [s], the accuracy

of the radar as 30 [m] in distance and 0.2 [deg.] in azimuth
and elevation angles.

In this simulation, the target starts to move from 70 [km]
apart from the radar toward the radar with a height of 10[km]
and the velocity of 306 [m/s]. Two types of trajectories
including straight and curved paths are tested as shown in
Fig.2.

For a scenario of the straight path, the target moves by the
uniform linear motion between 0 to 150 [sec.]. For a scenario
of the curved path, the target moves by the uniform linear
motion between 0 to 50 [sec.] and 100 to 150 [sec.], and with
the turning motion from 50 to 100 [sec.] during level flight. In
this scenario, the target turns 1 or 4 times on horizontal plane.

y

z

radar

target
10 km

Ground

70 km

y

x

radar target

Upper view
0~150 sec.

(a) Scenario of straight path

y

x

radar target

Upper view
100~150 5~50 sec.50~100

(b) Scenario of curved path

Fig. 2. Scenario for computer simulatoin

We run Monte-Carlo simulation in 50 times and evaluates
the RMS (Root Mean Square) error. Four types of tracking
filters are compared

1) Kalman filters which are adjusted to provide the best
performance at straight path

2) Kalman filters which are adjusted to provide the best
performance at curved path

3) Conventional particle filter
4) Noise-estimated particle filter (NPF)

The number of particles are 200 for conventional particle
filter and 100 for noise-estimated particle filter, which are
determined experimentally.

Tracking results for the proposed noise-estimated particle
filter which estimates system and observation noises are shown
in Fig.3. In Fig.3, KF Straight is the Kalman filter for straight
trajectory, KF Curve is the Kalman filter for curved trajectory,
PF is the conventional particle filter, and NPF QR is the pro-
posed noise-estimated particle filter. In addition, the estimated
system and observation noises for 4-turns trajectory are shown
in Fig.4.

The smoothing performance of the proposed noise-
estimated particle filter (NPF QR) outperforms the conven-
tional particle filter (PF), and is similar to the Kalman fil-
ter optimized for curved trajectory (KF Curve). Though the
Kalman filter optimized for straight trajectory (KF Straight)
shows the best performance in straight path, it cannot track
the target while turning at all. In addition, though the tracking
delay is occurred for the Kalman filter for curved trajectory
(KF Curve) at 4-turns scenario, the accuracy of the proposed
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Fig. 3. Tracking error (system and observation noises are estimated)
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Fig. 4. Estimated system and observation noises (4 turns)

filter is similar to the conventional particle filter (PF). Conse-
quently, it is confirmed that the proposed filter can be applied
to various scenarios more adaptively than other conventional
filters.

B. Performance of multiple target tracking using noise-
estimate particle PHD filter (NP-PHDF)

In this simulation, multiple targets are tracked simultane-
ously using the proposed noise-estimate particle PHD filter.

We evaluate the performance by the success rate of multiple
target tracking and RMS error between the actual and esti-
mated trajectries through Monte-Carlo simulation in 50 times.
To calculate the success rate, we define the tracking is suceeded
if the same target is tracked successively until the end.

In this simulation, two targets A and B are tracked simul-
tanously. The target A starts at the velocity of 306 [m/s] and
makes turns at the period from 50 [s] to 100 [s]. The target
B appears at 25 [s] after the target A starts the motion and
makes turns at the period from 50 [s] to 100 [s]. Both targets
are crossed at the position of 50 [km] apart from the radar
with the different of height of 300 [m], 600 [m], and 900 [m]
as shown in Fig.5.

radar

Fig. 5. Trajectries of targets

Table I shows the success rates of the conventional PHD
filter and the noise-estimate particle PHD filter (NP-PHDF).
We can see that the proposed noise-estimate particle PHD filter
outperforms the conventional PHD filter in all senarios.

TABLE I. SUCCESS RATE

Diff. height PHD filter [%] NP-PHDF [%]
300 [m] 54 78
600 [m] 96 98
900 [m] 100 100

Figs.6 ∼ 8 show the RMS errors in cases that the differ-
ences of height are 900[m], 600[m], and 300[m], respectively.

PHD filter

NP-PHD filter
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(a) object A

PHD filter

NP-PHD filter
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(b) object B
Fig. 6. RMS errors in case that difference of height is 900[m]
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(b) object B

Fig. 7. RMS errors in case that difference of height is 600[m]

The RMS error of the proposed noise-estimate particle
PHD filter is almost same as the conventional PHD filter
in a curved trajectry, and smaller than the PHD filter in a
straight trajectory. From this simulation, it is verified that the
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Fig. 8. RMS errors in case that difference of height is 300[m]

proposed noise-estimate particle PHD filter has higher tracking
performance than the conventional PHD filter.

V. CONCLUSION

This paper proposed the new noise-estimated PHD particle
filter for a multiple target tracking system. The proposed filter
estimates the system and the observation noises in Kalman fil-
ter by using the particle filter and adapts to the abrupt changes
of the target motion characteristics. In addition, multiple targets
are tracked simultaneously in a framework of PHD filter.

We examined the tracking performance of the proposed
noise-estimated PHD particle filter through computer simula-
tions for the radar tracking system, and confirmed that the
proposed filter has high smoothing performance for the track-
ing error and high stability performance for sudden changes
of the target motions.

This paper focused on the radar-based target tracking, how-
ever, the applications of the proposed noise-estimated particle
filter is not limited to radar tracking and we can apply the
proposed filter for a variety of vision-based tracking systems.
We are going to apply the proposed filter for, for example,
pedestrian tracking using distributed cameras and laser range
finders in near future.
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