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Abstract—We aim to develop a supporting system which
enhances the ability of human’s short-term visual memory in an
intelligent space where the human and a service robot coexist.
Particularly, this paper focuses on how we can interpret and
record diverse and complex life events on behalf of humans, from
a multi-perspective viewpoint. We propose a novel method named
“fourth-person captioning”, which generates natural language
descriptions by summarizing visual contexts complementarily
from three types of cameras corresponding the first-, second-
, and third-person viewpoint. We first extend the latest image
captioning technique and design a new model to generate a
sequence of words given the multiple images. Then we provide an
effective training strategy that needs only annotations supervising
images from a single viewpoint in a general caption dataset and
unsupervised triplet instances in the intelligent space. As the three
types of cameras, we select a wearable camera on the human, a
robot-mounted camera, and an embedded camera, which can
be defined as the first-, second-, and third-person viewpoint,
respectively. We hope our work will accelerate a cross-modal
interaction bridging the human’s egocentric cognition and multi-
perspective intelligence.

Index Terms—Intelligent space, image captioning

I. INTRODUCTION

Intelligent space, the room or the area that is equipped with

various sensors or cameras, has been widely studied in the

robotics community because of its feasibility of human-robot

coexistence [1]–[3]. Although it is difficult for a stand-alone

robot to observe the dynamic environment and operate diverse

service tasks for the humans with only on-board sensors,

intelligent space enables it to expand its observation area.

Moreover, the studies on intelligent space aim not only to

compensate their sensing ability but also to process the daily

streamed data and explore the information structure on behalf

of the robot [2], [3].

Here we address the problem in which how the intelligent

space can be used to augment the human’s short-term visual

memory. Some studies [2], [3] focused on the human-centered

system as an external memory in the intelligent space. Niit-

suma et al. [2] proposed a user interface which enables humans

to virtually arrange the computerized information to the real

3D space and to retrieve them by pointing. In our previous

work [3], we developed a glasses-type interface where the

users can know about the household items managed by the

intelligent space, by passing object keywords or just looking
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Fig. 1: Examples of the first-person images (left column),

the second-person images (middle column), and third-person

images (right column) in the intelligent space.

the shelves. Another approach to achieve the augmented

visual memories is to pool the autobiographical videos in a

daily life, extract the latent semantics, and configure a video

retrieval system with a high-affinity interface for humans [4].

Particularly, the first-person videos captured from the user’s

egocentric viewpoint have been attracting increasing interests

for that purpose. Miyanishi et al. [5] proposed a gesture-based

video retrieval system. Nakayama et al. [6] proposed a goggle-

type system which retrieves the past images with object label

queries. Meanwhile, Fan et al. [7] adopted the encoder-decoder

neural network [8] to generate natural language description for

the first-person image and developed a retrieval system. The

natural language sentence given to the image explains not only

the related objects but also the relationship between objects.

Compared to the gestures and the object labels, it is literally a

natural way for humans to generate flexible queries, e.g., they

can easily contain temporal terms. Due to the nature that the

first-person videos contain undergoing hand manipulations and

saliency objects, the first-person videos have been used for not

only the automated lifelogging [5]–[7] but also wearer’s action

recognition [9], [10] and so on. The first-person viewpoint

can now easily be acquired by wearable devices, however, the

view field is narrow and visual information about the wearer’s



surrounding fragmentarily appears.

Thus we focus on the multi-perspective vision we can lever-

age in the intelligent space. In the human-robot coexistence

situation, not just the user’s egocentric viewpoint, a robot-

mounted camera to monitor the human closely can also be

used. We define it as the second-person viewpoint. Moreover,

the intelligent space generally has embedded cameras to ob-

serve the comprehensive state. We define this type of camera

as the third-person viewpoint. In our previous work [11], we

proposed “the fourth-person viewpoint” which complemen-

tarily integrates three type of viewpoints. We assumed that

each of these has unique visual concepts and can be merged

to compensate incomplete information. It aimed to interpret

daily events precisely like a book reader who picks up multi-

perspective sentences and appreciates the story.

In this paper, we present a novel method to describe daily

events with a natural language by using the fourth-person

viewpoint in the intelligent space. The triplet images via the

fourth-person viewpoint have unique resolutions and unique

visible objects, which may raise the likelihood of the precise

caption generation. To our knowledge, we are the first to gen-

erate image captions from the multi-perspective viewpoints;

the first-, second-, and third-person viewpoints.

II. RELATED WORK

In this section, we describe relevant research background.

Most researches on the fusion of the multi-perspective

images focused on labeling of co-occurrence events related

to multiple viewpoints. Yonetani et al. [10] improved the

recognition of interactive actions/reaction from a pair of the

first- and second-person viewpoints. Fan et al. [12] proposed

a method to identify the first-person video from some camera

wearers in the third-person videos. Other works leveraged the

multiple videos for cross-view action recognition [13] and

event detection [14]. These studies focused on the classifi-

cation/identification of human actions and have not reached a

comprehensive description including handling objects and the

context.

On the other hand, in recent years, the task of gen-

erating image captions expressing visual information with

natural language sentences has developed rapidly, motivated

by advances in deep neural networks [7], [8], [15]. Image

captioning is the primary form of understanding real-world

scenes and is indispensable for a high-affinity interface in

the future intelligent systems. However, conventional image

caption research did not explicitly consider the modality by

person, and handled images of all viewpoints in a single input

model. Some studies [7], [15] focused on the first-person

images/videos for image captioning task. The work by Fan

et al. [7] is most closely related to ours. They generated a

caption from the first-person image sequences, in hopes of

automatic lifelogging. They gathered the first-person images

from a wearable camera, construct an annotated dataset, and

achieved to generate the “first-person” sentences. However, it

would take too much cost to newly annotate images. Even the

work [7] above used a common dataset which is composed of
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Fig. 2: A basic architecture for generating a sequence of

words S given a single image I (left) [8] and naı̈ve extension

for multiple inputs I1, I2, I3 (right). The “CNN”, “LSTM”,

“FCs”, and “Concat” denote a convolutional neural network,

a long shot-term memory module, fully-connected layers, and

concatenating operation, respectively.

random images. It can be still more a crucial problem for our

muti-perspective situation. Therefore, we tackle the problem

by taking a strategy to solve our objective with only single-

perspective supervision.

III. CAPTIONING MODEL

In this section, we describe the models that we use for the

caption generation from three types of images. Our model is

extended version of the encoder-decoder model [8] as shown

in Fig. 2. We add a fully-connected fusion layer which projects

the triplet image features produced by the encoder to a single

representation vector.

A. Image Encoder

Our model takes three types of raw images from a wearable

camera, a robot, and an embedded camera. We use a convo-

lutional neural network (CNN) pre-trained on the large-scale

image dataset such as ImageNet [16] in order to encode them

as a set of viewpoint-wise feature vectors fi, each of which is

a D1-dimensional global image representation.

B. Fusion Layer

The triplet image features fi ∈ R
D1 are simply concatenated

and fed into a fully-connected layer to project to a multimodal

space R
D2 which is followed by the caption decoder.

f ′ = W · f (1)

f = [f1, f2, f3]
T

(2)

where W ∈ R
D2×3D1 is learned parameters. The f ′ is

followed by a non-linearity and Batch Normalization [17]. We

employ a hyperbolic tangent for the non-linearity.



CNN CNN CNN

Triplet images: 𝐼", 𝐼$ , 𝐼%

CNN

LSTM

Uni-supervisionTri-regularization

Image-caption pair: 𝐼, 𝑆

FCs

𝐼" 𝐼$ 𝐼% 𝐼

−Σ log 𝑝- 𝑠-𝐿$distance

Switch ViewConcat

Shared
FCs

Reconstruction lossℒ123 Image-caption loss ℒ43

Shared

+

Fig. 3: Schematic illustration of training of our multi-

perspective captioning model. In the uni-supervision stream,

the visual information (solid lines) is fed into the LSTM cell

once at the first time step.

C. Recurrent Caption Decoder

We use a recurrent network with a long short-term memory

cell (LSTM) to generate words of a caption S = {s0, . . . , sT }.

At each time step t, the LSTM updates its hidden state ht,

given previous hidden state ht−1 and an input vector xt.

ht = LSTM(ht−1, xt) (3)

The multi-perspective feature f ′ generated by the fusion

layer is fed into the LSTM as x0 at the first step t = 0. At

the following time steps t ≥ 1, a word st−1 is embedded to a

D2-dimensional space as xt.

xt = We · st−1 (4)

where We ∈ R
D2×Ds is learned parameters. Note that a

st ∈ R
Ds is a word vector in one-hot representation and

its sequence starts with a special start token s0. The state

ht is then multiplied by additional parameters Ws and fed to

softmax(·) which produces a probability distribution pt over

the pre-defined vocabulary words. The next word st is defined

by argmax(pt).

IV. UNI-SUPERVISED AND TRI-REGULARIZED TRAINING

In this section, we address the problem on training the multi-

perspective model in our situation and describe our approach.

Traditionally, given an image I and a target word sequence

S = {s0, . . . , sT } as groud truth, the model θ is trained by

minimizing the sum of the crossentropy loss of the given

words, which equals to maximize the likelihood of the target

sequence.

LCE = −
T∑

t=1

log pt(st) (5)

To compute the loss, we need to initialize the LSTM with

the instance of the fused image feature at the first step, as

described in the previous section. Therefore, for such an

end-to-end manner, we have to newly prepare a large-scale

dataset consists of pairs of the triplet image inputs and the

correspoding caption outputs. However, it can be considered

that the daily living environments are diverse regarding house-

hold items or room layouts and it would take too much cost

to construct a new dataset which enables to learn visual-

semantic relationships and generalize every case. In this paper,

instead, we propose a novel training strategy to train the

multi-perspective captioning model with a single perspective

supervision generally used to train captioning models.

To supervise the multi-perspective model with a general pair

of a single image and caption candidates, we have several

options. The first approach is to duplicate the single image

to three inputs for the fusion layer and train the entire model

in the usual manner. This approach can sufficiently train the

language model but it may overfit to the “duplicated input”

situation which is totally different from the multi-perspective

vision. The second approach is to pool the image features, for

example by averaging or taking max values over the three

viewpoints, and feed into the LSTM. The feature pooling

techniques have been applied for unimodal images based on

the consistent contents, such as temporal pooling of frame-

wise features in video recognition [18] and multi-view pooling

in 3D shape recognition [19] whereas we focus on the multi-

perspective images. It can be easily applied various existing

methods and pre-trained models as is, however, some unique

attributes in each image may be diminished by pooling.

Consequently, we propose uni-supervised and tri-

regularized training which aims to train the multi-perspective

model without fully-paired supervision (See Fig. 3). It

consists of the uni-supervision stream that leverages general

image-caption pairs and the tri-regularization stream that

self-supervises by the triplet images. On the uni-supervision

stream, we first make a masked feature instead of the f

in Eq. 2 by randomly select a view as an image feature

and setting other views to zero (”Switch View” in Fig. 3).

Furthermore, all the nodes in the selected view are scaled by

factor 3. Note that we change this multiplexer mechanism

to an identity function during testing. Next, we propagate

through the remained networks and computes the crossentropy

loss LCE indicated in Eq. 5. Whereas, the tri-regularization

stream does not use the image-caption dataset but sets of

triplet images captured from the actual scenes. It configures

the autoencoder, containing the fusion layer as an encoding

part. This stream aims to preserve the information in three

views and avoid simple averaging in the uni-supervision

stream. Thus we compute the reconstruction loss LMSE

defined by mean square error. From the CNNs to the fusion

layer, both streams share the parameters to be learned. The

objective is to minimize a weighted loss of LCE and LMSE .

L = LCE + λLMSE (6)



Fig. 4: Experiment room we use for data collection

V. EXPERIMENTS

A. Data

We use MSCOCO dataset [20] to train our model on the

uni-supervision stream. We use the data splits from [21]

which contains 113,287 images for training, 5,000 images for

validation, and 5,000 images for testing. Each image has 5

captions. As a preprocessing of the sentences, we remove

punctuation and unify them in lower case. We prepare a

<start> and a <end> tokens as special words and prune

the vocabulary by defining any words that have a count less

than 5 as a special <unknown> word. The final vocabulary

comprises 10,107 words.

Furthermore, to train our model on the tri-regularization

stream, we collected multi-perspective image sets in the exper-

iment room shown in Fig. 4. The room is filled with various

items of furniture such as a desk, a couch, a plant, and a

television. We assumed that there are one resident and one

service robot in the room. To assemble and collect the triplet

images, a person wore a glasses-type wearable camera (Vuzix

M100 [22]) for streaming the first-person images to a cloud

server and acted some activities of daily living such as reading

a book, walking around, and watching television. Moreover,

we collected the second- and third-person images, from a cam-

era in the head of the service robot (Yaskawa SmartPalV [23])

and cameras fixed on the wall, respectively. Each image is

360×480 resolution. We simultaneously recorded three type of

images in every 5 seconds, with 8 different camera positions.

The final image sets contain 200 triplets for training and extra

triplets in several situations for testing. Example images are

shown in Fig. 1.

B. Implementation Details

The parameters of image encoder are transferred from

ResNet-152 [24] pre-trained on ImageNet [16] dataset up to

the global average pooling layer. Thus, given an arbitrarily

sized color image, the outputted image feature is a 2048-

dimensional vector. The fusion layer receives a concatenated

6144-dim vector from the image encoder and projects it to

2048-dim feature space (see Eq. 1). The input and hidden

state dimensions of the LSTM are set to be 512.

We compute the weighted loss from the crossentropy of

MSCOCO data and the self-supervised mean square error of

the triplet images, each of which is with a mini-batch of

TABLE I: Caption scores on MSCOCO test splits.

Input BLEU-4 METEOR ROUGE-L CIDEr-D SPICE

Single 27.8 24.3 51.8 90.9 17.6

Triplet† 26.0 23.0 50.3 83.2 16.2

† Set an identical image to three inputs.

16. We choose the weight of 1 for λ of Eq.6. We train our

model under the weighted loss objective using Adam optimizer

with a learning rate of 5 × 10−4. We decay the learning rate

by multiplying factor 0.8 in every 3 epochs. Moreover, we

employ ”Scheduled Sampling” [25] where the model feeds

back its own prediction to input at next step under the feedback

probability p. We initialize the factor p with 0 and increase by

0.05 every 5 epochs until it reaches 0.25. We select the final

model which achieves the best CIDEr-D score on duplicated-

input images made of MSCOCO validation set.

All algorithms are implemented in PyTorch [26] and run on

NVIDIA GeForce GTX Titan X.

C. Results

We compare our multi-perspective model with the basic

single-perspective model which receives only one image. We

herein denote the models as “Triplet” and “Single”, respec-

tively. In Table I, we show some qualitative scores on the

MSCOCO test split with common metrics in natural language

processing tasks. We generated captions by greedy decoding.

Note that our scores here are not in the multi-perspective

scenario. It can be seen that the performance gap is small

even with the random view switching and the regularization

during training our model.

In addition to caption generation, we visualize the internal

response in models by Grad-CAM [27]. Grad-CAM enables

us to see discriminative regions that strongly influence a

resulted caption, by weighting feature maps of a certain layer

with gradients derived from the score. We choose the last

convolution layer of the image encoder for extracting feature

maps. Moreover, we extend the Grad-CAM calculation by

computing word-wise log probability for each step instead of

sentence-wise log probability [27]. We normalize the gradient-

based weights over three streams of all the steps.

We generated captions from our triplet images with (i)

the single-perspective model which produces for each image

(Single), (ii) the same model with a pooled feature (Single-

Pool), and (iii) our proposed multi-perspective model (Triplet).

We used beam search approach to decode words with a beam

width of 5. The example of generated captions and the Grad-

CAM visualization is shown in Fig. 5. In the situation of Fig. 5,

the man sitting on the couch is reading the book, otherwise,

the robot is facing to the man and they are in the living room.

(i) As shown in Fig. 5(a)(b)(c), given the first-, second-, and

third-person images, the single-perspective model produced “a

person holding a pair of scissors in their hand”, “a woman

sitting on a couch with a cat in her lap”, and “a man sitting in

a chair in a living room”, respectively. Although each caption

deviates from the actual scenes, they captured fragmentary



visual concepts, for instance, the fact that the actor holding a

object, which has appeared in the first-person vision. (ii) As

shown in Fig. 5(d), the feature-pooling method produced “a

woman sitting on the floor playing a video game”. It succeeded

to describe the sitting man but the remained sentence is totally

incorrect. According to the visualization, the phrase ”playing a

video game” was affected by the region around the robot. (iii)

Finally, as shown in Fig. 5(e), our proposed multi-perspective

model produced “a woman sitting on a couch using a laptop

computer”. The result was still inappropriate but succeeded

to describe the woman sitting on a couch from the triplet

images with only the single supervision, and to strongly and

simultaneously activate in the couch regions on the second-

and third-person images. Additionally, we provide other results

with four types of models in Fig. 6.

VI. CONCLUSION AND DISCUSSION

In this paper, we have proposed a novel image captioning

approach using a multi-perspective viewpoint, i.e., the first-

person image from a wearable camera, the second-person

image from a camera mounted on a robot, and the third-person

image from an embedded camera in the intelligent space. To

generate captions from the triplet images, we extended the

basic encoder-decoder network and introduced uni-supervised

and tri-regularized training which enables us to train the

model with only single-perspective annotations. Our model

succeeded to learn to generate caption from the triplet images

under the training strategy we proposed. Although we could

confirm some improvement in some samples, even the results

from single images contained inappropriate words. It can be

considered that the image quality or domain gap between

datasets caused the problems. Future work includes construct-

ing an annotated test set for evaluation and demonstrate the

effectiveness quantitatively.
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(c) The third-person viewpoint by the model Single

Grad-CAM
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(d) The fourth-person viewpoint by the model Single-Pool

Grad-CAM
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(e) The fourth-person viewpoint by the model Triplet (ours)

Fig. 5: Results from triplet images captured in the intelligent room. The first and the second figures from the left are input

images and sentence-wise Grad-CAM [27]. The following figures from the third are word-wise Grad-CAM, each of which is

with the predicted word and its probability. Regions highly contributing to predict the word appears in red color.

Example 1 Example 2

Single-1: a close up of a person holding a

skate board, Single-2: a couple of people

that are sitting on a couch, Single-3: a group

of people sitting around a table in a room,

Single-Pool: a woman sitting in front of a

laptop computer, Triplet: a man sitting on

a couch in a living room

Single-1: a close up of a black and white

object, Single-2: a woman sitting at a desk

with a laptop, Single-3: a living room with

furniture and a flat screen tv, Single-Pool:

a person sitting at a desk with a laptop,

Triplet: a desk with a computer and a lamp

on it

Example 3 Example 4

Single-1: a person holding a nintendo wii

game controller, Single-2: a woman sitting

at a table with a cup of coffee, Single-3: a

living room filled with furniture and a flat

screen tv, Single-Pool: a man sitting at a

table in front of a laptop computer, Triplet: a

man sitting at a desk in front of a computer

Single-1: a close up of a person holding a

cat, Single-2: a woman standing in front of

a refrigerator, Single-3: a living room filled

with furniture and a fire place, Single-Pool:

a person sitting on a chair in front of a tv,

Triplet: a man standing in a kitchen next to

a cat

Fig. 6: Generated examples, each of which is with input images (left) and outputted captions (right). The each image is a set

of the first- (top), second- (middle), and third-person images (bottom). The ”Single-X” denotes a caption from the Xth-person

image. True positive terms are highlighted in blue. Some improvements by Triplet model (ours) can be seen in the examples

1 and 3. Whereas the examples 2 and 4 fail to generate appropriate captions.


