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Abstract— This paper proposes a new control method for
the robotic arm with rotational counterweights. This robotic
arm is actuated by gravitational and inertia torque of the
counterweights. To date, the control law which achieves the
angle control of the robot has been proposed. However, in the
research, only 1 DOF robot is discussed. Moreover, the stability
analysis of the dynamics hasn’t been shown. The new control
method proposed in this paper achieves the angle control of 2
DOFs, and we can prove the dynamic stability. In this paper, we
show the convergence of the dynamics considering the method.
Also we conduct numerical simulations for position control
of 2 DOFs robotic arm. Verifying the angles of the robotic
arm converge to its desired angles, the utility of the method is
demonstrated.

I. INTRODUCTION

Conventional robotic arms have been made of metal to
increase their stiffness and precision of motion. However, it
also causes a problem that the robots become heavy. In order
to drive heavy joints and compensate their gravity effects,
motors with high reduction gears have to be embedded
in joints. The geared motors lead large friction effects on
joints and decrease backdrivability. These problems have
been discussed by a number of researchers so far.

In general, the solution is gravity compensation mecha-
nism. Spring is one of the most popular structures for gravity
compensation [1]–[3]. This structure can achieve the function
without large weight gains though the structure becomes
complicated. On the other hand, counterweight also works as
gravity compensation [4], [5]. This structure is very simple
though the total weight of robot system increases as shown in
Figure 1 (A). In addition, this counterweight system makes
the center of gravity approach the base of robots. This feature
indicates the possibility to make the base of the robot arm
light and slender. It is useful in narrow environment such
as on vehicles. In this paper, we focus on the advantages of
counterweight systems.

In order to enhance the feature of counterweights for
gravity compensation, Akihiro et al. have proposed a robotic
arm with a rotational counterweight [6]. In this system, the
counterweight works as not only gravity compensation but
also actuation. The gravitational equilibrium angle is shifted
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Fig. 1. (A)Fixed counterweight, (B)Rotational counterweight

by rotating the counterweight on the link. Then, the robot is
driven to realize the angle. Figure 1 (B) shows the rotational
counterweight structure. As shown in Figure 1 (B), a motor
is not located in the joint. Then, the friction effect caused
by reduction gears is reduced. Thereby, this system has high
backdrivability. In terms of a robotic arm which has free
joints, Torque Unit Manipulator (TUM) has been proposed
[7]. In TUM, ”torque units” are attached on an arbitrary place
of the arm links. Torques generated by ”torque units” actuate
these links. However, in [7], the effect of gravitational force
is not considered. Moreover, in the previous research [6],
only 1 DOF robot is discussed and the stability analysis of
the dynamics hasn’t been shown.

In this paper, a new control method for the robotic
arm with the rotational counterweights is proposed. In this
method, the stability analysis of whole dynamics considering
the controller is verified. In addition, it is applicable to
2 DOFs systems. The elicitation process of the analysis
is formulated by referring to a research which proposes
a controller for other underactuated system [8]. In what



Fig. 2. The model of a robotic arm using rotational counterweights

Fig. 3. Real robotic arm using rotational counterweights

follows, section II shows the dynamics and the structure
of the robot. In section III and IV, the new controller is
proposed, and the stability analysis is done. Then, the results
of numerical simulations using the controller is shown in
section V.

II. SYSTEM DESIGN

In this section, 2 DOFs robotic arm with rotational
counterweights is introduced. Figures 2 and 3 show the
model of the arm and the real robotic arm, respectively.
The movable counterweights are installed and rotate on the
links. Therefore, the joints between links do not have any
actuators. It means that these joints are free. Most of the
friction effects caused by geared motors on the joints are
removed since there exists only bearings to connect links.
The arm is driven by the inertia and gravitational forces
generated by the counterweights.

As shown in Figure 2, the angle of the first link and the
angle of the first counterweight relative to the first link are
q1 and q01, respectively. In a similar way, the angle of the
second link relative to the first link and the angle of the
second counterweight relative to the second link are q2 and
q02, respectively. The masses of the first and second links are
denoted by M1 and M2. Also, those of the counterweights
are denoted by m1 and m2. The distances toward the center
of mass from the joints are denoted by L1g and L2g . Also,
those of the counterweights are denoted by l1g and l1g .

Firstly, a vector of angles is defined as

q = (q1, q2, q01, q02)
T
. (1)

Then, the dynamics of this robotic arm is expressed as

Hq̈ +C +G = τ . (2)

In (2), H is 4× 4 matrix and

C = (C1, C2, C01, C02)
T
, (3)

G = (G1, G2, G01, G02)
T
, (4)

τ = (0, 0, τ01, τ02)
T
, (5)

H11 = M1L
2
1g +M2L

2
2g +m1l

2
1g +m2l

2
2g

+M2L
2
1 +m2L

2
1 + 2M2L1L2g cos q2

−2m2L1l2g cos (q2 + q02) , (6)
H12 = H21 = M2L

2
2g +m2l

2
2g +M2L1L2g cos q2

−m2L1l2g cos (q2 + q02) (7)
H13 = H31 = H33 = m1l

2
1g (8)

H14 = H41 = m2l
2
2g −m2L1l2g cos (q2 + q02) (9)

H22 = M2L
2
2g +m2l

2
2g (10)

H24 = H42 = m2l
2
2g (11)

H44 = m2l
2
2g (12)

H23 = H32 = H34 = H43 = 0 (13)

C1 = −M2L1L2g (2q̇1 + q̇2) q̇2 sin q2

+m2L1l2g (2q̇1 + q̇2 + q̇02) (q̇2 + q̇02)

sin (q2 + q02) (14)
C2 = M2L1L2g q̇

2
1 sin q2

−m2L1l2g q̇
2
1 sin (q2 + q02) (15)

C01 = 0 (16)
C02 = −m2L1l2g q̇

2
1 sin (q2 + q02) (17)

G1 = (M1L1g +M2L1 +m2L1) g cos q1

+M2gL2g cos (q1 + q2)−m1gl1g cos (q1 + q01)

−m2gl2g cos (q1 + q2 + q02) (18)
G2 = M2gL2g cos (q1 + q2)

−m2gl2g cos (q1 + q2 + q02) (19)
G01 = −m1gl1g cos (q1 + q01) (20)
G02 = −m2gl2g cos (q1 + q2 + q02) (21)

H denotes the inertia matrix of the robot. C is the vector
represents coriolis and centrifugal force of the robot. G
expresses gravity terms of the arm links and the coun-
terweights. The symbol τ represents the input torques of
the motors mounted on the arm links which actuate the
counterweights. The input torques are shown in only the
dynamics of the counterweights side in (5) since this system
is an underactuated system.



III. CONTROL LAW

In this section, we show a new control method for the
robotic arm. In general, it has been difficult to control
underactuated system stably. In the most of the researches
about underactuated system, inverted pendulums has been
discussed. Thereby, we have to develop a new control method
for the arm with the rotational counterweights since the
dynamic model is different. To date, a control law has been
proposed for the rotational counterweight robot by Akihiro
et al. [6]. The angle control of the robot is achieved by using
this control law. However, the convergence of the closed-loop
dynamics is not verified and only 1 DOF robot arm has been
discussed. Therefore, it is difficult to apply to multi DOFs
robot and to discuss about stability region of the desired
angle and the coefficients in the method.

In this paper, a new control method is proposed in which
the dynamic stability is proven. Also, it is applicable to the
2 DOFs robot. The method is based on the previous work
[6] and refers to an elicitation process to satisfy a stability
analysis which has been proposed by Chun et al. [9]. The
proposed method is obtained as follows:

τ01 = −Kp1 (q1d − q1) +Kv1q̇1 −Kv01q̇01 − τc1

− (M1L1g +M2L1 +m2L1) g cos q1 (22)
τ02 = −Kp2 (q2d − q2) +Kv2q̇2 −Kv02q̇02

−M2gL2g cos (q1 + q2)− τc2 (23)

τc1 =
(1 + k1) q̇01
q̇201 + δ1

[(q̇1 + q̇01) τd11 + q̇1τd12] (24)

τc2 =
(1 + k2) q̇02
q̇202 + δ2

(q̇2 + q̇02) τd2 (25)

τd11 = −Kp1 (q1d − q1) +Kv1q̇1

+m1gl1g cos (q1 + q01)

− (M1L1g +M2L1 +m2L1) g cos q1 (26)
τd12 = m2gl2g cos (q1 + q2 + q02)

−M2gL2g cos (q1 + q2) (27)
τd2 = −Kp2 (q2d − q2) +Kv2q̇2

+m2gl2g cos (q1 + q2 + q02)

−M2gL2g cos (q1 + q2) (28)

k̇1 =


η1

k1

(
k1q̇

2
01−δ1

q̇201+δ1

)
[(q̇1 + q̇01) τd11 + q̇1τd12] (k1 ̸= 0)

δ1 (k1 = 0)

(29)

k̇2 =

{
η2

k2

(
k2q̇

2
02−δ2

q̇202+δ2

)
(q̇2 + q̇02) τd2 (k2 ̸= 0)

δ2 (k2 = 0)
(30)

where Kp1, Kp2, Kv1, Kv2, Kv01, Kv02, δ1, δ2, η1 and
η2 are positive constants. The symbol q1d and q2d represent
desired angles of the first and second links, respectively.
Kv1q̇1 and Kv2q̇2 are dumping terms of the first and second
links. Similarly, Kv01q̇01 and Kv02q̇02 are those of the
counterweights. In this method, τc1 and τc2 are in the sense
of [9]. By adding these terms, we can get the stability of
whole dynamics. The symbol k1 k2 are the adaptive terms.

In other words, this control method is designed in order to
show the stability analysis of whole dynamics.

IV. STABILITY ANALYSIS

In this section, the stability analysis of the dynamics
considering the proposed method is shown. From (2), we
can obtain

Hq̈ +

(
1

2
Ḣ + S

)
q̇ +G = τ . (31)

In (31), Ḣ is the time differential matrix of the inertia matrix
and S is the 4×4 skew-symmetric matrix. Some components
of the matrix S are expressed as follows:

S12 = −1

2
M2L1L2g (2q̇1 + q̇2) sin q2

+
1

2
m2L1l2g (2q̇1 + q̇2 + q̇02) sin (q2 + q02) , (32)

S14 =
1

2
m2L1l2g (2q̇1 + q̇2 + q̇02) sin (q2 + q02) ,(33)

S21 = −S12, (34)
S41 = −S14, (35)

and the others are equal to zero.
By taking a sum of inner product of (31) and time

differential of (1), the closed loop dynamics expressed as

q̇THq̈ + q̇T

(
1

2
Ḣ + S

)
q̇ − q̇T (−G+ τ ) = 0 (36)

Then, the first and second terms of (31) is rearranged as
follows:

q̇THq̈ +
1

2
q̇TḢq̇ + q̇TSq̇

=
d

dt

[
1

2
q̇THq̇

]
+ q̇TSq̇. (37)

Since S is the skew-symmetric matrix, we can obtain

q̇TSq̇ = 0. (38)

The third term of (31) is rearranged as follows:

q̇T (−G+ τ ) = −q̇TG+ q̇01τ01 + q̇02τ02 (39)

The second term of (39) is rearranged as follows:

q̇01τ01 =(q̇1 + q̇01) τd11 + q̇1τd12 −Kv1q̇
2
1 −Kv01q̇

2
01

−q̇01τc1 −
d

dt

[
1

2
Kp1 (q1d − q1)

2

]
+q̇1G1 + q̇01G01 (40)

The third term of (39) is rearranged as follows:

q̇02τ02 = (q̇2 + q̇02) τd2 −Kv2q̇
2
2 −Kv02q̇

2
02

−q̇02τc2 −
d

dt

[
1

2
Kp2 (q2d − q2)

2

]
+q̇2G2 + q̇02G02 (41)



In addition, if k1 and k2 are not equal to zero, (29) and
(30) can be written as follows:

k1q̇
2
01

q̇201 + δ1
[(q̇1 + q̇01) τd11 + q̇1τd12]

=
k1k̇1
η1

+
δ1

q̇201 + δ1
[(q̇1 + q̇01) τd11 + q̇1τd12] .(42)

k2q̇
2
02

q̇202 + δ2
(q̇2 + q̇02) τd2

=
k2k̇2
η2

+
δ2

q̇202 + δ2
(q̇2 + q̇02) τd2. (43)

These expression are based on the sense of [9]. Therefore,

q̇01τc1 =
d

dt

[
k21
2η1

]
+ (q̇1 + q̇01) τd11 + q̇1τd12. (44)

q̇02τc2 =
d

dt

[
k22
2η2

]
+ (q̇2 + q̇02) τd2. (45)

By substituting (44) into (40), we obtain

q̇01τ01 = − d

dt

[
1

2
Kp1 (q1d − q1)

2
+

k21
2η1

]
−Kv1q̇

2
1 −Kv01q̇

2
01 + q̇1G1 + q̇01G01 (46)

From (41) and (45),

q̇02τ02 = − d

dt

[
1

2
Kp2 (q2d − q2)

2
+

k22
2η2

]
−Kv2q̇

2
2 −Kv02q̇

2
02 + q̇2G2 + q̇02G02 (47)

By substituting (46) and (47) into (39), we obtain

q̇T (−G+ τ ) =−Kv1q̇
2
1 −Kv01q̇

2
01 −Kv2q̇

2
2 −Kv02q̇

2
02

− d

dt

[
1

2
Kp1 (q1d − q1)

2
+

k21
2η1

+
1

2
Kp2 (q2d − q2)

2
+

k22
2η2

]
(48)

From (37) and (48),

d

dt

[
1

2
q̇THq̇ +

1

2
Kp1 (q1d − q1)

2

+
1

2
Kp2 (q2d − q2)

2
+

k21
2η1

+
k22
2η2

]
= −Kv1q̇

2
1 −Kv01q̇

2
01 −Kv2q̇

2
2 −Kv02q̇

2
02. (49)

Therefore, if we consider the positive function V ,

V =
1

2
q̇THq̇ +

1

2
Kp1 (q1d − q1)

2

+
1

2
Kp2 (q2d − q2)

2
+

k21
2η1

+
k22
2η2

, (50)

and

V̇ = −Kv1q̇
2
1 −Kv01q̇

2
01 −Kv2q̇

2
2 −Kv02q̇

2
02

≤ 0, (51)

TABLE I
PHYSICAL PARAMETERS

Link length L1 0.20 [m]
L2 0.20 [m]

Counterweight length l1 0.15 [m]
l2 0.15 [m]

Center of mass of link L1g 0.09 [m]
L2g 0.09 [m]

Center of mass of counterweight l1g 0.07 [m]
l2g 0.07 [m]

Link mass M1 0.20 [kg]
M2 0.20 [kg]

Counterweight mass m1 5.0 [kg]
m2 0.80 [kg]

TABLE II
CONTROLLER PARAMETERS

Kp 0.10
Kv1 0.20
Kv2 0.02
Jp 0.10
Jv1 0.10
Jv2 0.05
δ1 0.002
δ2 0.002
η1 0.000001
η2 0.000001

TABLE III
INITIAL CONDITION

q̇1 0.00 [rad/s]
q̇2 0.00 [rad/s]
q̇01 0.00 [rad/s]
q̇02 0.00 [rad/s]
q1 -1.57 [rad]
q2 0.00 [rad]
q01 3.14 [rad]
q02 3.14 [rad]

are obtained. Equations (50) and (51) yield∫ ∞

0

(
−Kv1q̇

2
1 −Kv01q̇

2
01 −Kv2q̇

2
2 −Kv02q̇

2
02

)
dt

≤ V (0)− V (t) ≤ V (0) , (52)

This equation shows that the joint angle velocities q̇1 (t),
q̇2 (t), q̇01 (t) and q̇02 (t) are squared integrable over time
t ∈ (0,∞). It shows that q̇1 (t) , q̇2 (t) , q̇01 (t) , q̇02 (t) ∈
L2(0,∞). Thereby, the output of the overall system q̇(t)
is uniformly continuous since it is shown that q̇ → 0 and
q̈ → 0 if t → ∞ [8]. Therefore, it is clear that the joint
angle q1 and q2 converge to their desired angles q1d and q2d
from (50),respectively.

V. NUMERICAL SIMULATIONS

Several numerical simulations to show the effectiveness
of the proposed method are conducted here. The simulator
is developed using the dynamics shown in (2). The physical
parameters of the robot are shown in Table I. Table II shows
the parameters in (22)-(30). The initial condition of the robot
arm is shown in Table III. In initial state, the arm links and
the counterweights are vertically downward (Figure 4 (A)).



Fig. 4. (A) Initial state of simulations. (B) One of desired states of
simulations.

Fig. 5. The transient response of q1 when desired angles are q1d = 0
[rad] and q2d = 0.52 [rad].

In this paper, numerical simulations for two different
desired angles q1d = 0◦, q2d = 30◦ and q1d = 30◦, q2d =
−30◦ are conducted. Figures 5, 6, 7 and 8 show the transient
responses of q1, q2, q01 and q02 respectively in the case
where the desired angles are q1d = 0◦ and q2d = 30◦.
Furthermore, the transient of input torques τ01, τ02 are shown
in Figures 9,10. Similarly, figures 11, 12, 13 and 14 show
the transient responses of q1, q2, q01 and q02 respectively
in the case where the desired angles are q1d = 30◦ and
q2d = −30◦. The transient of input torques τ01, τ02 in this
case are shown in Figures 15,16. From these results, it is
confirmed that the joint angles q1 and 2 converge to their
desired value. Moreover, the angles of the counterweights
q01 and q02 converge to constant values although we haven’t
set desired angles of counterweights. The constant values
are equivalent to the equilibrium angles of counterweights
to satisfy the following equations.

(M1L1g +M2L1 +m2L1) g cos q1

+M2gL2g cos (q1 + q2)−m1gl1g cos (q1 + q01)

−m2gl2g cos (q1 + q2 + q02) = 0, (53)
M2gL2g cos (q1 + q2)

−m2gl2g cos (q1 + q2 + q02) = 0 (54)

Furthermore, input torques of counterweights τ01, τ02 also
converge to constant values. Then, the usefulness of the
proposed method and the dynamic stability are verified.

Fig. 6. The transient response of q2 when desired angles are q1d = 0
[rad] and q2d = 0.52 [rad].

Fig. 7. The transient response of q01 when desired angles are q1d = 0
[rad] and q2d = 0.52 [rad].

Fig. 8. The transient response of q02 when desired angles are q1d = 0
[rad] and q2d = 0.52 [rad].

Fig. 9. The transient of τ01 when desired angles are q1d = 0 [rad] and
q2d = 0.52 [rad].

VI. CONCLUSION

In this paper, we proposed a new control method for
the rotational counterweight robot arm. Using this method,
the convergences of the closed-loop dynamics and joint
angles toward their desired angles are verified theoretically.
Moreover, the effectiveness of the proposed method and the
stability analysis are verified by the results of numerical
simulations. In future works, experiments using real robotic
arms must be conducted.



Fig. 10. The transient of τ02 when desired angles are q1d = 0 [rad] and
q2d = 0.52 [rad].

Fig. 11. The transient response of q1 when desired angles are q1d = 0.52
[rad] and q2d = −0.52 [rad].

Fig. 12. The transient response of q2 when desired angles are q1d = 0.52
[rad] and q2d = −0.52 [rad].

Fig. 13. The transient response of q01 when desired angles are q1d = 0.52
[rad] and q2d = −0.52 [rad].
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