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Abstract—Detection of spatial change around a robot is
indispensable in several robotic applications, such as search and
rescue, security, and surveillance. The present paper proposes
a fast spatial change detection technique for a mobile robot
using an on-board RGB-D/stereo camera and a highly precise
3D map created by a 3D laser scanner. This technique first
converts point clouds in a map and measured data to grid
data (ND voxels) using normal distributions transform and
classifies the ND voxels into three categories. The voxels in
the map and the measured data are then compared according
to the category and features of the ND voxels. Overlapping
and voting techniques are also introduced in order to detect
the spatial changes more robustly. We conducted experiments
using a mobile robot equipped with real-time range sensors to
confirm the performance of the proposed real-time localization
and spatial change detection techniques in indoor and outdoor
environments.

I. INTRODUCTION

Spatial change detection is a fundamental technique for
finding the differences between two or more pieces of
geometrical information. This technique is critical in sev-
eral applications, such as topographic change detection in
airborne laser scanning [1] [2] or terrestrial laser scanning
[3] [4], map maintenance in urban areas [5], preservation
of cultural heritage [6], and analysis of plant growth [7].
In robotics, detection of spatial changes around a robot is
indispensable in several robotic applications, such as search
and rescue, security, and surveillance. Service robots, such
as cleaning robots or delivery robots, which are used on a
daily basis, require the ability of spatial change detection in
order to safely and efficiently co-exist with humans, because
the environment can change dynamically according to human
behavior. For these service robots, precise localization is also
required in order to perform a desired task.
Two-dimensional LiDARs, such as Hokuyo TOPURG and

Sick TiM51x, have commonly been used for the localization
of mobile robots due to their low cost, small size, and high
precision [8][9][10]. On the other hand, in recent years,
with the widespread use of low-cost 3D laser scanners,
such as FARO Focus 3D, and 3D range sensors, such
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as Kinect, Xtion, and Velodyne HDL-32e, 3D localization
(or 6D localization, including attitude) is also becoming
available in robotic applications using highly accurate 3D
mapping and real-time 3D range data. However, in general,
data measured by these sensors consist of millions of 3D
points, which are referred to collectively as a point cloud.
Real-time processing of a large number of point clouds is
therefore not a trivial task. For example, although iterative
closest point (ICP) [11] is a popular technique for aligning
point clouds, ICP requires the determination of point-to-
point (or mesh) correspondences, and thus the calculation
cost remains too large for real-time localization or spatial
change detection by a mobile robot using point clouds.
In order to deal with the enormous number of points

in a point cloud for robust robot localization, we have
proposed a fast localization technique using normal distri-
butions transform (NDT)[12] and a particle filter [13]. In
the present paper, as an additional function of the proposed
localization technique [13], we propose a fast spatial change
detection technique by comparing 3D range data obtained
by an on-board RGB-D/stereo camera and a high-precision
3D map created by a 3D laser scanner. This technique first
converts point clouds in the map and measured data to grid
data (ND voxels) by NDT, and classifies the voxels into
three categories. The voxels in the map and the measured
data are then compared according to the category and
features of ND voxels. Overlapping and voting techniques
are also introduced in order to detect spatial changes more
robustly. We conducted the experiments using a mobile robot
equipped with real-time range sensors in order to confirm
the performance of the proposed real-time localization and
spatial change detection techniques in indoor and outdoor
environments.

II. RELATED RESEARCH

Spatial change detection is a critical problem in some
robotic applications [14] [15] [16] [17] [18], [19]. Andreas-
son et al. [14] proposed autonomous change detection for a
security patrol robot. They used color and depth information
obtained from a 3D laser range finder and a camera. A
precise reference model was first created from multiple color
and depth images and was registered by 3D normal dis-
tributions transform (3D-NDT) [20] representation. Spatial
changes are detected by calculating the probabilistic value
of the current point being different from the reference model
using the 3D-NDT representation and color information.
Saarinen et al. [21] proposed Normal Distributions Trans-



form Occupancy Maps (NDT-OM), which concurrently rep-
resent the occupancy probability and the shape distribution
of points (NDT) in each voxel. The occupancy probability
is calculated from a sensor model and the point distribution
in the voxel, and the similarity measure of two NDT-OMs is
defined by L2 distance function. Nùüez et al. [15] proposed
a fast change detection technique using a mixture Gaussian
model and a fast and robust matching algorithm. Point-
based comparison of an environmental model and a large
number of point cloud data measured by an on-board range
sensor requires a large calculation cost. In order to solve this
problem, they represented the environmental model and the
measured data with a mixture Gaussian model and processed
the difference calculation using a high-speed algorithm. Fehr
et al. [18] presents a 3D reconstruction technique of dynamic
scenes involving movable objects using the truncated signed
distance function (TSDF). They represented the current scene
with TSDF grids and compared them with previous TSDF
grids to obtain segmented movable objects in the scene.
Luft et al. [19] proposed a stochastic approach to evalu-
ate whether a grid is changed in time according to full-
map posteriors represented by real-valued variables. Their
technique enables consideration of the full-path information
of the laser measurement, as opposed to end-point based
approaches. Moreover, it considers the confidence about the
cell values as opposed to occupancy maps or a most-likely
maps.
In general, spatial change detection can be classified into

three groups: point/mesh-based, height-based, and voxel-
based comparisons. Point/mesh-based comparison [22] [6]
is a technique that compares the distance of nearest points
or meshes in two point clouds, which is similar to the ICP
algorithm [23]. Lague et al. [4] proposed the use of the
distance along normal direction of a local surface to make
the algorithm robust to errors in 3D terrain data measured by
a terrestrial laser scanner. In [3], point clouds are converted
to panoramic distance images, which are compared directly.
The problem with this technique is the degree to which the
proper threshold is determined [22].
Height-based comparison is often used in geographical

analysis in earth sciences. The digital elevation map (DEM)
of difference (DoD) is a popular technique to compare
geographical data captured by airborne or terrestrial laser
scanners [5] [24] [2]. This technique also has the problem
of selecting a proper threshold.
In voxel-based comparison, a point cloud is first converted

to a voxel representation using, for example, an octree
structure. Performing the XOR of occupancy voxels is the
simplest way [25] to find spatial differences. In [26], three
metrics are compared in order to calculate the difference of
voxels, which are the average distance, the plane orientation,
and the Hausdorff distance. The Hausdorff distance is the
maximum value of the minimum distances of points in two
voxels and indicates the best performance. However, the
computational cost of the Hausdorff distance is quite high,
because closest point pairs must be determined. In spatial
change detection in 3D, not only point clouds but also a

sequence of camera images has been used [27], [28].
The proposed technique is a voxel-based comparison

method. However, rather than comparing the distances of
points or meshes or the existence of occupied voxels directly,
we used the point distribution in each voxel calculated by
3D-NDT. We classify the distribution of points in a voxel into
three categories and compare the voxels in different scans
according to the category of voxels. Although Andreasson
et al. [14] also used 3D-NDT for spatial change detection,
their technique can be classified as a point-based comparison
because they used 3D-NDT to calculate the probability of a
point being different from the reference model.

III. FAST 3D LOCALIZATION USING NDT AND A
PARTICLE FILTER

We have proposed a fast 3D localization technique using
a large-scale 3D environmental map measured by a 3D laser
scanner and 3D range data captured by an RGB-D/stereo
camera on a mobile robot [13].
The proposed technique uses the idea of NDT [11] for

expressing a point distribution in a compact but information-
rich form. Point clouds in an environmental map are first con-
verted to the ND voxel representation. Then, in order to more
efficiently handle the characteristics of point distribution,
representative planes called eigenplanes are extracted and
registered as a new environmental map representation. Next,
when a mobile robot scans the surrounding environment
using an on-board RGB-D/stereo camera, an obtained 3D
point cloud is also converted to the ND voxel representation
and eigenplanes are extracted in the same manner for the
environmental map. In addition, seven representative points
(six sigma points and a center point) are extracted and
registered as additional features. Finally, the similarities
between the environmental map and the measured data
are examined based on plane-and-plane and point-and-plane
correspondences. Using the obtained similarities, a particle
filter is used to find the optimum position, which indicates
the maximum similarity between the environmental map and
the measured data.

IV. FAST SPATIAL CHANGE DETECTION USING ND
VOXELS

In this section, we propose a fast spatial change detection
technique using ND voxels, which are generated and used
for the localization [13] mentioned in Section III. The most
simple technique for spatial change detection using voxels
is to compare the existence of occupied voxels in a same
space by XOR operation [25], in which a spatial change is
considered to have occurred if an occupied voxel exists on
the map data but does not exist in the measured data, or vice
versa. However, due to quantization errors or localization
and measurement errors, this simple technique does not work
well in many cases. For example, if the localization error is
larger than the voxel size, most of the voxels are labeled as
spatial changes. In order to tackle this problem and realize
robust spatial change detection, the technique proposed in
this section adopts the following three techniques.



1) Classification of point distribution in an ND voxel
2) Overlapping of voxels in map data
3) Voting of spatial change detection through sequential
measurements

A. Classification of point distributions in ND voxels

If we use the simple technique for spatial change detection
by taking XOR between the map and the measured voxels
mentioned above, it is impossible to detect spatial changes
if the voxel includes not only point clouds to be detected as
spatial change but also other stationary point clouds such as
a floor or a wall. The proposed technique solves this problem
by classifying the point distribution in ND voxels into three
categories.
In the calculation of NDT during the localization [13],

three eigenvalues λ1, λ2, λ3 (λ1 < λ2 < λ3) and eigenvec-
tors of a covariance matrix of a point cloud in a voxel are
obtained. According to the following criteria, we classify the
point distribution in ND voxels into three categories, that is,
“Sphere”, “Sheet”, and “Line”. In addition, if there are no
measured points in a voxel, then we refer to the voxel as
“Empty”.

Sphere λ3 ≈ λ2 ≈ λ1 � 0 (1)

Sheet λ3 ≈ λ2 � λ1 ≈ 0 (2)

Line λ3 � λ2 ≈ λ1 ≈ 0 (3)

Magnusson et al. [29] also proposed a loop detection
technique using the histogram of three shapes (spherical,
planar, and linear), which are classified from point clouds
according to the eigenvalues. In our case, we use these
classifications to evaluate the difference between the map
and measured voxels.
If the voxels in the map and measured data are labeled

with different categories, then we say that there is a spatial
change in this space of the voxel. In addition, even if
both voxels have the same labels of “Sheet” or “Line”, we
compare the normal or direction vectors of the sheets and the
lines, which are the eigenvectors corresponding to minimum
and maximum eigenvalues, respectively. If these vectors are
sufficiently matched, then we consider these voxels to have
the same labels and ignore their spatial change.

(nmap,nmeasured) < Nt (Sheets) (4)

(vmap,vmeasured) < Vt (Lines) (5)

where n and v are the normal and direction vectors of the
sheets and the lines which are eigenvectors corresponding to
the smallest and the largest eigenvalues, and Nt and Vt are
proper thresholds. nmap and vmap are calculated beforehand
from the environmental map (point cloud) measured by a 3D
laser scanner, and nmeasured and vmeasured are obtained
using the measured map (point cloud) by an on-board RGB-
D/stereo camera. In the experiments in Section VI, we set Nt

and Vt as 0.5. Similar idea can be seen in [26], in which ”best
fitting plane orientation” was used to evaluate the spatial
changes.

B. Overlapping of voxels in map data

The proposed technique inherently involves a quantization
error because we divide the entire space into several voxel
grids and perform NDT for each voxel. Thus, the classifi-
cation mentioned above is also affected by the quantization
error. For example, the boundary between a floor and a wall
is classified as “Sheet” if the majority of points in the voxel
belong to either a floor or a wall. On the other hand, the
boundary is classified as “Sphere” if both planes are evenly
included.
In order to suppress the influence of quantization error,

the proposed technique uses overlapping ND voxels [12];
that is, adjacent voxels overlap each other so that the centers
of the voxels are displaced with half the voxel size. As a
result, every point in 3D space is involved with eight adjacent
voxels. Thus, by comparing a voxel in the measured data with
up to 27 adjacent voxels in the map data, we can evaluate
the degree of coincidence of the map and the measured
data robustly with respect to the quantization error. More
precisely, if at least one voxel in 27 voxels in the map data is
similar enough to the voxel in the measured data, that voxel
is marked as ”no change”. In the proposed technique, the
ND voxels in the map overlap, and ND voxels are calculated
beforehand in order to reduce the on-line calculation cost.

C. Voting of spatial change detection through sequential
measurements

The measurement data taken from an RGB-D/stereo cam-
era, such as Kinect or a stereo camera, are corrupted by
noise, and the measurement noise tends to be detected
as spatial change in some cases. Therefore, we adopt a
voting technique through sequential measurements in order
to suppress the effect of the measurement noise. Here, we
first extract the voxels that are regarded as spatially changed
voxels in each measured datum. Then, by voting on these
results for the space in a global coordinate system with the
following weights according to the 3D normal distribution,
the regions of spatial change can be obtained robustly.

w(p) = N(c, σ2) (6)

where p is the center of the adjacent voxel in the map data
and c is the center of the original voxel in the measured data.
In the experiments in Section VI, we set the voxel size as

400 mm and σ as 200 mm, and voted for the information of
the spatial change to 27 adjacent voxels.

V. MOBILE ROBOT SYSTEM FOR LOCALIZATION AND

SPATIAL CHANGE DETECTION

In order to confirm the performance of the proposed
localization and spatial change detection techniques, we built
a mobile robot system equipped with an omni-directional
laser scanner (Velodyne HDL-32e) and an RGB-D camera
(Kinect for Xbox One, Microsoft), as shown in Fig. 1.
For localization, point cloud data measured by the omni-
directional laser scanner are compared with a large-scale 3D
map measured by a high-precision laser scanner (Focus 3D,



FARO). However, the number of scanning lines of the omni-
directional laser scanner is 32, which is not sufficient for
detecting spatial changes in small regions. Thus, the RGB-D
camera is used to capture detailed range data in front of the
robot for spatial change detection.

Velodyne HDL-32e

Kinect for Xbox One

Fig. 1. Mobile robot system equipped with an omni-directional laser
scanner (Velodyne HDL-32e) and an RGB-D camera (Kinect, Microsoft).

VI. EXPERIMENTS IN INDOOR AND OUTDOOR
ENVIRONMENTS

A. Indoor experiments

We conducted an experiment for spatial change detection
in an indoor environment (a hall) in order to confirm the
performance of the proposed technique. We first scanned the
hall from eight positions using a high-precision laser scanner
(Faro Focus 3D) and obtained an environmental map with
dimensions of 40 m × 11 m. Figure 2 shows the obtained
3D point cloud and ND voxel representation.

Fig. 2. 3D environmental map and ND voxel representation. Red, green,
and blue cubes are voxels labeled sphere, line, and sheet, respectively.

Next, we placed three objects, as shown in Fig. 4, having
dimensions of a© 10 cm × 10 cm × 10 cm ( 1© and 5©), b©
20 cm × 20 cm × 20 cm ( 2© and 6©), c© 30 cm × 30 cm ×
30 cm ( 3© and 7©), and d© 40 cm × 40 cm × 40 cm ( 4© and
8©) at the positions shown in Fig. 3. The robot (Fig. 1) then
moves along the trajectory shown in Fig. 3 and attempts to
find these objects as spatial changes.

Initial position

Final position

5 m

1234

56

78

Fig. 3. Indoor environment (Hall: 40 m × 11 m).

The initial position of the robot is determined as follows.
An initial position is first roughly assigned by hand. The
accurate position is then estimated using the omni-directional

a b c d

1

2
3

4

5 6

7 8

Fig. 4. Objects placed in the pathway.

laser scanner and the environmental map by the positioning
technique in Section III [13], which is based on the compar-
ison of ND voxels and optimization using a particle filter.
The target position is determined manually, and the path to
the target position is determined by Dijkstra’s algorithm in
the navigation package in the robot operating system (ROS).
The robot moves along the desired path automatically and
fuses the position information from the particle filter [13] and
odometry at 1 Hz. The range data from the RGB-D camera
(measured data) are transformed using the estimated position
information and compared with the environmental map using
the proposed technique. In this experiment, the voxel size for
localization and the spatial change detection is 40 cm.
Table I shows the positioning errors in cases that the voxel

size is 40 [cm] and 100 [cm]. The actual robot position is
measured by the high-precision laser scanner (Faro Focus
3D) placed at a known position. In this experiment, the
number of particles is fixed to 400. From this table, we can
see that the accuracy for the localization is about 10 [cm]
and not so different for the cases that the voxel sizes are 40
[cm] and 100 [cm].

TABLE I

POSITIONING ERRORS

Voxel size Error
40 [cm] 99.2 [mm]
100 [cm] 104.6 [mm]

Figure 5(e) shows the detected spatial changes by the
proposed method. Though one region is misdetected as
indicated by a white circle, the four kinds of objects that are
placed at eight positions later are correctly detected in this
experiment. We run the robot from the same initial position
to the target position by taking RGB-D data ten times, and
obtained the detection rate of the spatial changes as shown
in Table II. Note that we considered the object is detected
in case that at least one voxel containing vertexes, edges, or
planes of the object is detected as spatially changed.

TABLE II

THE DETECTION RATE FOR FOUR KINDS OF OBJECTS

Object (size) Detection rate [%]
Proposed 3D-NDT[14] L2 [21]

A (400 × 400 mm) 100 100 95
B (300 × 300 mm) 100 100 95
C (200 × 200 mm) 85 75 50
D (100 × 100 mm) 50 15 0

We also compared the performance of the proposed
method with the 3D-NDT based spatial change detection



Misdetected regions

Undetected objects

(a) 3D-NDT based spatial change detection [14]

Misdetected regions

Undetected objects

(b) L2 distance function [21]

Misdetected regions

(c) Taking XOR of occupancy voxels [25]

Misdetected regions

Undetected objects

(d) Taking XOR of overlapped occupancy voxels

Misdetected regions

(e) Proposed  method

Fig. 5. Detected changes by (a) 3D-NDT based spatial change detection
[14], (b) L2 distance function [21], (c) taking XOR of occupancy voxels
[25], (d) taking XOR of overlapped occupancy voxels, and (e) proposed
method. Misdetected regions and undetected objects are indicated by white
circles and crosses.

by Andreasson et al. [14], L2 distance function [21], and
simple methods using XOR calculation [25]. Figure 5(a)
shows the detected spatial changes by the 3D-NDT based
method [14]. In this experiment, we used the depth images
captured by the RGB-D camera only and the color images
were not used. Although the changed regions are mostly
detected, some regions are misdetected or undetected. Table
II shows the detection rate for each object by the 3D-NDT
based spatial change detection after ten trials. These results
show that the proposed method outperforms the 3D-NDT
based spatial change detection especially in case that small
objects are placed. Although it may be possible to improve
the detection rate by decreasing the threshold for evaluating
the spatial change, this induces many misdetection as shown
in Fig, 5(a).
Figure 5(b) shows the detected spatial changes by L2

distance function [21]. Figures 5(c) and (d) show the detected
spatial changes by taking XOR between the map and the
measured voxels [25]. Figure 5(d) uses the overlapped voxels
in the map and we judged that the voxel is not spatially
changed if at least one voxel among 27 map voxels adjacent
to the measured voxel is occupied. In these experiments
using XOR calculation, a number of misdetected regions are
found, which are mainly caused by the positioning error of
the mobile robot. On the other hand, the proposed method
(Fig. 5(e)) is robust against position error due to voxel
classification and voting technique.
Finally, we show the precision and recall of the detection

of voxels which are specially changed for each method

in Table III. We used the overlapped voxels in the map
and considered the voxel in the map should be detected as
spatially changed if it contains vertexes, edges, or planes
of the objects. Table III shows that the proposed method,
which uses classification of point distribution, overlapping
voxels, and voting techniques, gives highest precision (98.50
%) and outperforms other techniques. Figure 6 shows PR
and ROC curves for each method using various parameters.
In these figures, we can say that the proposed technique
outperforms the conventional 3D-NDT [14] and L2 distance
based techniques. Note that the recalls are considerably low
in all methods. This is because all voxels including at least
one vertex, edge, or plane of the object are regarded as the
correct voxels to be detected, and therefore, for example,
the voxels on a wall hidden by the object are considered as
missing voxels which are not correctly detected.

TABLE III

PRECISION AND RECALL [%]

Precision Recall
3D-NDT [14] 61.90 4.79
L2 [21] 81.19 1.11
XOR [25] 17.55 3.95
XOR (overlapped) 69.99 1.71
Classification 22.74 2.47
Classification, overlapping 61.77 26.06
Classification, overlapping, voting (Proposed) 98.50 7.58
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Fig. 6. PR and ROC curves.

B. Processing time for localization and spatial change de-
tection

We measured the processing time for localization and
spatial change detection in this experiment. Table IV shows
the average processing time for one cycle of each step
during the experiments (Intel Core i7, 3.40GHz). The average
processing time for spatial change detection by the proposed
technique is 21.3 millisecond including the conversion pro-
cess of the depth images captured by the RGB-D camera
to the ND voxel representation. On the other hand, the pro-
cessing time by the 3D-NDT based spatial change detection
[14] is 563.6 millisecond and the proposed technique is 26.5
times faster than the 3D-NDT based technique. The simple
method using XOR calculation [25] is slightly faster than
the proposed method. Note that, since these processes can
be executed independently, we run processes of localization
and spatial change detection at 1 Hz in the experiments.



TABLE IV

PROCESSING TIME FOR EACH STEP

Localization 827.2 [msec]
3D-NDT[14] 570.0 [msec]
L2 [21] 17.2 [msec]

Spatial change detection XOR[25] 17.9 [msec]
XOR (overlapped) 19.4 [msec]
Proposed 20.4 [msec]

C. Outdoor experiments

In these experiments, we first scan the outdoor environ-
ment (road) from three positions using a high-precision laser
scanner (Faro Focus 3D) and obtained an environmental map
having dimensions of 30 m × 10 m. We then placed four
objects having dimensions of 1©, 40 cm × 40 cm × 40
cm; 2©, 40 cm × 40 cm × 80 cm; 3©, 80 cm × 15 cm ×
60 cm; and 4©, 40 cm × 40 cm × 20 cm, and the robot
moves 30 m along a straight line. Here, we replaced the
RGB-D camera with a conventional stereo camera system
because acquiring range data in direct sunlight using the
RGB-D camera (Kinect for Xbox One) becomes extremely
difficult. We captured 430 range images using the stereo
camera system during the movement.
Figure 8(a) shows the detected regions (red, green, and

blue cubes), which are estimated to be spatially changed
using XOR calculation of the occupied voxels [25]. Figures
8(b), 8(c), and 8(d) show the detected regions using the
classification of point distribution (Section IV-A), classifica-
tion and overlapping of voxels in map data (Section IV-B),
and classification, overlapping, and voting of spatial change
detection through sequential measurements (SectionIV-C),
respectively. In Fig. 8, detected voxels classified as “Sphere”,
“Sheet”, and “Line” are illustrated by red, blue, and green
cubes, respectively. Table V shows the number of voxels de-
tected as spatial changes in these experiments. As shown Fig.
8(d), the voxels with spatial changes are detected correctly if
we apply all of the techniques proposed in Section IV, that
is, classification of point distribution, overlapping of voxels
in map data, and voting of spatial change detection.

TABLE V

NUMBER OF VOXELS DETECTED AS SPATIAL CHANGES

XOR 704
Classification 364
Classification and overlapping 313
Classification, overlapping, and voting (Proposed) 48

1

23 4

Fig. 7. Four additional objects in an outdoor environment.

Detected changes

(a) XOR calculation of
occupied voxels

Detected changes

(b) Classification of point
distribution

Detected changes

(c) Classification of point
distribution and
overlapping

Detected changes

(d) Proposed method
(classification,

overlapping, and voting)
Fig. 8. Detected spatial changes (red, blue, and green cubes) in an outdoor
environment.

VII. CONCLUSIONS

The present paper proposed a fast spatial change detection
technique for a mobile robot using an on-board RGB-
D/stereo camera and a high-precision 3D map created using
a 3D laser scanner. This technique first converts point clouds
in a map and measured data to grid data (ND voxels) using
NDT and classifies the voxels into three categories. The
voxels in the map and measured data are then compared
according to the category and features of the ND voxels.
The proposed technique consists of the following three
techniques.

1) Classification of the point distribution
2) Overlapping of voxels in map data
3) Voting of spatial change detection through sequential
measurements

We conducted experiments using a mobile robot equipped
with real-time range sensors in order to confirm the per-
formance of the proposed real-time localization and spatial
change detection techniques in indoor and outdoor environ-
ments.
Future work includes performance evaluation of actual

scenes, such as stations or market areas, and improvement of
the performance by using other information, such as color
or laser reflectance. In particular, laser reflectance, which
is obtained as a side product of range measurement by a
laser scanner, is measured stably independent of the lighting
condition, even at night. Therefore, as additional information,
evaluating the spatial change robustly is very useful.
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