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Global localization, which determines an accurate
global position without prior knowledge, is a funda-
mental requirement for a mobile robot. Map-based
global localization gives a precise position by com-
paring a provided geometric map and current sen-
sory data. Although 3D range data is preferable for
6D global localization in terms of accuracy and reli-
ability, comparison with large 3D data is quite time-
consuming. On the other hand, appearance-based
global localization, which determines the global po-
sition by comparing a captured image with recorded
ones, is simple and suitable for real-time process-
ing. However, this technique does not work in
the dark or in an environment in which the light-
ing conditions change remarkably. We herein pro-
pose a two-step strategy, which combines map-based
global localization and appearance-based global local-
ization. Instead of camera images, which are used
for appearance-based global localization, we use re-
flectance images, which are captured by a laser range
finder as a byproduct of range sensing. The pro-
posed method consists of two steps: i) reflectance im-
ages acquired by a laser range finder are used for
rough estimation of global position based on the bag-
of-features (BoF) technique, and ii) precise global
positions are determined automatically by the itera-
tive closest points (ICP) algorithm for 3D range data.
The effectiveness of the proposed technique is demon-
strated through experiments in real environments.

Keywords: Global localization, Appearance-based local-
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1. INTRODUCTION

In numerous practical applications, the external envi-
ronment around a robot is unpredictable, unstructured,
and uncontrolled. For example, in an area that has been
struck by a strong earthquake or by a mine disaster, pre-
viously navigable areas may be blocked by heaps of rub-
ble or collapsed walls, and the geometric structure will
differ from the original structure. In order for a robot to
efficiently accomplish search and rescue tasks in this type
of unknown and unpredictable environment, accurate map

creation and localization are fundamental requirements.
Global localization, which is the problem of deter-

mining an accurate position in a global coordinate sys-
tem using surrounding features given a map but has no
prior knowledge, is also a basic requirement for mobile
robots. A number of global localization techniques have
been proposed [11], and these techniques can be classi-
fied into two groups, i.e., map-based global localization
and appearance-based global localization.

Map-based global localization is a commonly used, tra-
ditional technique that determines a global position us-
ing a provided geometric map and sensory data[1]. The
map can consist of either two-dimensional (2D) or three-
dimensional (3D) structures. The problem is to find the
best position at which the observed geometric features
match those in the provided geometric map. From the
point of view of accuracy, comparison of 3D range data
captured by a range sensor and a pre-constructed 3D map
is preferable because this will enable precise 6D (position
and attitude) global localization. However, the compari-
son of large 3D data is quite time-consuming.

On the other hand, appearance-based global localiza-
tion is a technique that determines a global position using
camera images[14],[15],[16]. Many camera images are
recorded under natural light or indoor illumination in the
environment in which the robot operates, and global lo-
calization is performed by finding the best match using
a newly-captured image and stored images. Appearance-
based global localization is simple and suitable for real-
time processing. Moreover, appearance-based global lo-
calization is very similar to the method used by human
beings. However, appearance-based global positioning
encounters a critical problem in dark environments or in
environments in which the lighting condition changes dra-
matically.

We herein propose a two-step strategy that com-
bines map-based global localization and appearance-
based global localization. Instead of camera images,
which are used for the appearance-based global localiza-
tion, we use reflectance images, which are captured by a
laser range finder as a byproduct of range sensing. As
a result of the characteristics of the reflectance image,
which is not subject to significant variation of the external
illumination conditions, the proposed technique is use-
ful even in the dark or in an environment under severe
lighting conditions. Furthermore, fast and precise local-
ization can be performed by comparing a few 3D range
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images, which are selected based on the similarity of the
reflectance images. The proposed two-step strategy is as
follows: i) reflectance images acquired by a laser range
finder are used for rough estimation of a global position
based on the bag-of-features (BoF) technique, and ii) pre-
cise global positions are automatically determined by the
iterative closest points algorithm for 3D range data.

The remainder of the present study is organized as fol-
lows. After a brief introduction of related research in Sec-
tion 2, Section 3 introduces the cooperative positioning
system on which the proposed method is based. The pro-
posed two-step strategy is described in detail in Sections
4 and 5, and experimental results are presented in Section
6.

2. Related research

In the robotics community, several appearance-based
localization systems have been developed. These systems
differ primarily in the features used to match images and
can be categorized into two major types. The first uses lo-
cal features extracted from small regions that are robust to
variations and occlusions. Vertical lines features and their
line support region (LSR) have been used for this purpose
[17]. The second type uses global features extracted from
the entire image. The first 15 Fourier components have
been used as a compact representation of omnidirectional
images [18]. In a previous study [20], the matching of the
local features named Modified SIFT (MSIFT) algorithm
was used, and compares MSIFT with three other features,
including one global feature and two local features.

The BoF technique is a popular technique that com-
bines the advantages of local and global features for effi-
cient representation of raw images captured by a camera.
The BoF technique first extracts local features of an im-
age and then constructs a histogram using the extracted
local features as a representation of the global features.
The BoF technique is successfully applied to the SLAM
problem. In [2], the loop closure detection, which is a
problem to find a location where the robot previously vis-
ited, was solved by the BoF technique in a probabilistic
manner. However, these methods assume that the illu-
mination condition does not change so severely. There-
fore, the travel distance of the robot must be short enough
so that the lighting condition will not change drastically.
In another study, the experimental results were not eval-
uated explicitly under significant changes in illumination
[3]. These methods will fail in the dark or in environments
in which the lighting is dramatically changed.

Panoramic vision has become prevalent in recent years
and has several advantages compared to conventional
camera images. Omnidirectional cameras have been
used in numerous studies on robotic self-localization
[18][17][21][20]. Another approach that does not use om-
nidirectional images extracts a visibility region σM for
each image M. The visibility region σM corresponds to all
positions in a given metric map of the environment from
which the closest object in image M in the direction of

the optical axis is visible. This method can be considered
to be an expansion of panoramic vision to a conventional
camera.

A laser range finder, which measures the distance from
the sensor to the surroundings, is a popular device for
robot localization, map creation, and 3D modeling. When
range is measured by a laser range finder, the reflectivity,
which indicates the strength of the reflected laser, can be
obtained as a byproduct of range data. Note that all of the
pixels in the range image have corresponding reflectance
values. In other words, the range image and the re-
flectance image are precisely and fundamentally aligned.
In addition, since the reflectance image is not subject to
any extreme variations in the external illumination con-
ditions, stable reflectance images can be obtained even at
night.

The proposed technique uses a panoramic reflectance
image instead of a regular camera image. By applying the
BoF technique for a reflectance image that corresponds to
3D range data, the global localization using 3D range data
and 2D images is achieved efficiently. Hara et al.[4] uti-
lizes reflection intensity from a 1D laser range finder for
localization in 2D space. On the other hand, our tech-
nique utilizes 2D reflectance images obtained by a 3D
laser range finder for 3D localization. This technique
is deterministic and so does not rely on the Markov as-
sumption, in which the future state of the robot, given the
present and past states, depends on only the present state
[13]. Moreover, this technique does not encounter the
kidnapped robot problem [12], because its current state
depends purely on the current sensor reading.

The proposed technique is similar to that described in
[21] in that it uses pyramidal matching kernels to obtain
a topological localization and then uses the most similar
image found in the image database and the 1D trifocal ten-
sor estimated from three view feature matches to achieve
accurate metric localization. In addition to the illumina-
tion requirements, the proposed technique would fail in
non-planar locations because of the use of a 1D trifocal
tensor. In Section 6, we demonstrate the capability of the
proposed technique in various environments.

3. Development of a 3D global map by the co-
operative positioning system

3.1. Laser-based environmental modeling by multi-
ple mobile robots

For map-based global localization, an environmental
map must be created and provided beforehand. For pre-
cise 3D mapping of the environment around a robot, we
have proposed an efficient and precise system called CPS-
SLAM [5], which can construct a rather accurate large-
scale 3D map by means of a laser range finder and multi-
ple robots based on technology used for geographical sur-
veying. This technique is used as the basis of the urban
search and rescue (USAR) robot [6].

Figure 1 shows the fifth CPS-SLAM model, called
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Fig. 1. Three-dimensional modeling robots, CPS-V

Table 1. Laser range finder (SICK LMS151)

Measuring range 50[m]
Field of view 270[◦]

Precision ±30[mm]
Angular resolution 0.25[◦]

CPS-V. This system consists of one parent robot and two
child robots. The parent robot is equipped with a highly
precise laser range finder (GPT-9000A, TOPCON LTD),
a 2D laser range finder (SICK LMS151), and a three-axis
attitude sensor. The two child robots are equipped with
corner cubes. The GPT-9000A and corner cubes are used
cooperatively for self-positioning, as shown in Fig.2. The
LMS151 (Table 1) placed on a rotating table acquires two-
dimensional slit-like range data, which are vertical to the
ground. This sensor can capture reflectance data at the
same time. Therefore, by rotating the table around the ver-
tical axis for 360 ◦ while scanning with a 2D laser range
finder, 3D range data and a 2D reflectance image are ac-
quired. The number of pixels on a reflectance image is
exactly the same as the number of 3D points in the range
data, i.e., there exists a one-to-one mapping relationship
between 2D pixels of the reflectance image and 3D points
of the local 3D map.

3.2. Three-dimensional global map

The process of mapping the entire field is displayed in
Fig.3. In each location, the parent robot collects a lo-
cal 3D map and its measurement position based on the
relative observation between the parent and child robots.
Eventually, all of the local 3D maps are aligned into a
global 3D map using the measurement position informa-
tion. Additional details about CPS-based simultaneous
localization and mapping (CPS-SLAM) can be found in
[5].

Fig. 2. Cooperative positioning system (CPS)

Fig. 3. Construction of a large-scale 3D map by the CPS

3.3. Reflectance images
As mentioned above, reflectance images are captured

as a byproduct of range sensing. Two examples of a re-
flectance image and its corresponding 3D data acquired
by CPS-V are shown in Fig.4. Note that each reflectance
image contains the position information for the location
at which the image was captured. These images are used
for appearance-based global localization in the proposed
two-step strategy.

3.4. Image retrieval using the BoF technique
When the global 3D map of the target field is con-

structed, a Kd-tree structure storing BoF representations
of reflectance images is also constructed at the same time.
Reflectance images are represented as histograms of oc-
currence of the visual words in an image. First, regions in
feature space are mapped to visual words by clustering all
SURF [7] or SIFT [8] features extracted from recorded
images into representative words using k-means cluster-
ing, and the words are stored using a Kd-tree structure.
Using these words as the x-axis, we quantize each feature
in a reflectance image to its approximate nearest word by
searching the Kd-tree, and all of the recorded reflectance
images are represented as statistics of words (histograms).
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Fig. 4. Reflectance and range images

Finally, the histograms of all recorded images are stored
using a Kd-tree structure. A newly-captured image is also
represented as a histogram, and M images that best match
the newly-captured image are retrieved by quantizing the
histogram to its nearest M histograms.

4. Two-step strategy combining appearance-
based and map-based global localization

This section presents the two-step strategy for precise
localization using a 3D map. First, we need to create a
global map as a training dataset. As explained in Section
3, the CPS robots move in the environment and construct a
3D global map. At the same time, the parent robot collects
reflectance images at each measurement position. Then,
all of reflectance images are represented using the BoF
technique, and a training dataset is created. Finally, the
dataset of all of the BoF representations is stored in a Kd-
tree, which is efficient for information retrieval.

For global localization, a new robot that is equipped
with a 3D range sensor, such as CPS-V, collects local 3D
data and 2D reflectance images (test data). In the first
step, we retrieve initial location candidates by comparing
stored reflectance images (training dataset) and captured
reflectance images (test data) using the BoF technique and
a Kd-tree. We then apply a 3D geometric constraint in
order to extract true feature pairs and run automatic ICP
in the second step. As a result of the first step, fast and
precise localization can be performed in the second step
by comparing a few 3D range images, which are selected
based on the similarity of the reflectance images in the
first step.

We hereinafter denote variables related to training data

as Trm or Dtr and variables related to test data as Ten
or Dte, where D indicates the 3D distance between two
points in a local 3D map. Moreover, Train i.re f and
Train i.pts represent the ith reflectance image and the
local 3D map, respectively, in the training dataset, and
Test j.re f and Test j.pts represent the jth reflectance im-
age and the local 3D map, respectively, in the test dataset.

In the following, the proposed two-step strategy is de-
scribed in detail.

4.1. First step: initial localization by BoF using 2D
reflectance images

All Test j.re f are converted into BoF representations,
and the M best matches are searched in the Kd-tree
that was constructed from the training dataset. The M
Train i.re f and Train i.pts are then selected as M can-
didates for the position of the robot in the 3D global map.

4.2. Second step: precise localization by automatic
ICP using 3D data

With M candidate positions, automatic ICP [9][10],
which consists of two processes is applied to remove in-
correct candidates. However, before applying automatic
ICP, 3D geometric constraints are used to remove outliers
for using RANSAC, as follows:

1 Rough alignment with RANSAC

a Find the corresponding features between
Test j.re f and Train i.re f .

b Get the 3D coordinates of corresponding features
using Test j.pts and Train i.pts, which corre-
spond to Test j.re f and Train i.re f , respectively.

c Remove outliers by 3D geometric constraints.
This process will be explained in Section 5.

d 3D transformation between Test j.pts and
Train i.pts is estimated by RANSAC.

e Align Test j.pts to Train i.pts.

2 Precise alignment with ICP

a Run ICP[9] using Test j.pts and Train i.pts,
which are already roughly aligned.

As a result of ICP, two metrics are defined for evalu-
ating the accuracy of the alignment between Test j.pts
and Train i.pts. One is the alignment ratio, and the other
is the average error. First, we set a threshold of maxi-
mum distance between a pair of 3D points in Test j.pts
and Train i.pts. Suppose Test j.pts has K points in to-
tal, N of which have corresponding points in Train i.pts.
The alignment ratio is defined as N/K. In these N pairs
of points, the sum of errors between each pair of points
divided by N is defined as the average error.
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Fig. 5. Corresponding features between Test 17.re f and
Train 22.re f . The left-hand image shows all of the corre-
spondences, and the right-hand image shows the correct cor-
respondences extracted by voting algorithm.

5. Outlier removal by 3D geometric constraints

Unlike the color and undistorted images used in other
studies, gray and distorted reflectance images do not con-
tain much information. Therefore, a number of false pairs
of matching features (POMFs) between two reflectance
images will be extracted. In some cases, the number of
MFs is larger than the number of true POMFs. As shown
in Fig.5, there are only four true pairs of matching features
between Test 17.re f and Train 22.re f , and their actual
locations are shown in Fig.8. Since each feature on the
2D reflectance images has a unique 3D position on the
3D local map, geometric constraints, such as the distance
and the normal vector of a surface can be used to extract
true POMFs. We propose a voting algorithm to maintain
the true POMFs and remove the false POMFs using 3D
geometric information. This process corresponds to Step
1-c) in Section 4-B.

Fig. 6. 3D geometric constraint

The first step of the voting algorithm is outlier removal
by comparing the 3D distance between two POMFs (see

Algorithm 1). Here, Dtr is the 3D distance between Trm
and Trn, and Dte is the 3D distance between Tem and Ten.
If the error between Dtr and Dte is less than Dthresh, then
the scores of two of the POMFs are increased by 1. If the
final score of a POMF is less than η × f actor1, then this
POMF is removed as an outlier. In Fig.6, |AG| ≠ |A′G′|,
|AH| ̸= |A′H ′|, and the red points are removed during this
step.

The second step is outlier removal by comparing the
edges and normal vectors of triangles in 3D space. This is
based on a self-evident theorem. Namely, given any three
points in 3D space, independent of the (0,0,0)T of a local
3D map, the lengths of the three edges are constant. In
addition, the angle between a normal vector and an unit
vector vertical to the ground (0,0,1)T is also constant. In
Fig.6, α,β ,θ , and ϕ are the angles between the normal
vector of triangles and the unit vector (0,0,1)T . Here,
△ADE, △A′D′E ′, △ADF , and △A′D′F ′ have AA′ and
DD′ as common POMFs. We also have |AD| ̸= |A′D′|,
|DE| ≠ |D′E ′|, and |θ − ϕ | > ANGthresh. In addition,
△ABC ∼= △A′B′C′, and α = β . If the final scores of
POMFs DD′andFF ′ are smaller than ω × f actor2, then
these POMFs are removed. Thus, POMFs AA′,BB′,CC′

and EE ′ remain. The blue points are removed during this
step. Then, the remaining green points are the inputs of
RANSAC.

Using Algorithm 1, the outliers of POMFs between re-
flectance images can be removed effectively. A number
of false candidate features will be excluded by this voting
algorithm. In Fig.5, 4 true corresponding pairs are ex-
tracted from 32 pairs of corresponding features success-
fully. Since a small number of reliable POMFs remain,
this can reduce the retrieval time. The effectiveness of the
proposed method is demonstrated in Section 6.

6. Experiment

Two experiments are conducted in order to verify the
performance of the proposed two-step strategy. The paths
for the experiments are shown in Fig.7. The path for the
first experiment is shown in Fig.8, where a number of
buildings exist along the path. The other experimental
path, which is along a long and slope road, is shown in
Fig.9. Only a few trees and poles exist along the road-
way. Example reflectance images for the second exper-
iment are shown in Fig.10. In the first experiment, a
number of buildings that are good references are near the
path of the robot. On the other hand, in the second ex-
periment, the buildings are relatively far from the robot,
and the reflectance images are made up of primarily the
ground, trees, and poles. Intuitively, trees and poles are
not good references, since they are similar and the leaves
and branches of trees move due to the wind.

6.1. Experiment in the area containing buildings
The size of reflectance images is 590×569 pixels. The

CPS-V robots move and stop at 58 different locations in
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Algorithm 1 Voting algorithm
Assume η POMFs are extracted from Train i.re f and
Test j.re f
for 0 ≤ m < η do

Get two 3D points (Trm and Tem) from the m th feature.
for m+1 ≤ n < η do

Get another two 3D points (Trn and Ten) from the n th

feature

i f (|Dtr −Dte|< Dthresh) (1)

{score1[m]++;

score1[n]++;}

end for
end for
for 0 ≤ m < η do

i f (Score1 [m]< η × f actor1) (0 < f actor1 < 1) (2)

Delete the m th pair
end for
Assume ω POMFs remain after above vote step
for 0 ≤ iteration < ω ×N do

Randomly select three POMFs ω ×N (N is a pre-defined
iteration number) times to form two triangles in 3D space
(Tr∆ and Te∆).

i f
(∣∣Tr∆edg −Te∆edg

∣∣< D∆thresh
)

. . . (3)

i f (|T rDEG −T eDEG|< ANGthresh) . . . (4)

{score2[m]++;

score2[n]++;

score2[k]++;}

end for
for 0 ≤ m < ω do

i f {score2 [m]< ω × f actor2} (0 < f actor2 < 1) (5)

Delete the m th pair
end for

the experimental area indicated by the red path in Fig.8,
i.e., 58 data (Train i.re f and Train i.pts) are stored as the
training dataset. On the other hand, test data (Test j.re f
and Test j.pts) are collected at 29 locations as indicated
by the three colored paths in Fig.8. The three colors indi-
cate data collected at different times from different start-
ing points, so that the global coordinates of the data are
different (see [5]).

6.1.1. Results of position estimation after the first step
(coarse estimation)

The results of location estimation after the first step are
listed in Table 2. In this experiment, M in Section 4.1 is
set to be 5, i.e., five candidates for each Test j.re f are

Fig. 7. Experimental areas

Fig. 8. Experimental area containing buildings

retrieved from the training dataset by the Kd-tree. The
experimental results show that all of the positions of the
robot are included in selected five candidate locations. Es-
pecially in 25 positions, the positions of the robot are cor-
rectly estimated as the first candidate. In two positions,
the second candidates are the actual locations. The re-
maining two positions are also correctly estimated as the
third and fifth candidates, respectively.

Table 2. Correctness of position estimation after the first
step in the area containing buildings

No. 1st 2nd 3rd 4th 5th Total Correctness ratio
Correct

localization 25 2 1 0 1 29 100%

6.1.2. Results of position estimation after the second
step (precise estimation)

Initially, Dthreshold in Algorithm 1-(1) is set to be 3 [m]
according to the attributes of LMS151 shown in Table 1,
f actor1 in (2) is 1/3, N is ω/2, D∆thresh of (4) is 1 [m],
and factor2 of (5) is 1/3. The threshold of the average
error for terminating ICP is set to be 0.02 [m] after 40
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Fig. 9. Experimental area along a road. Here (1) indicates
the start of the training path and the end of the test path,
and (2) indicates the start of the test path and the end of the
training path.

Fig. 10. Reflectance images collected along the road. Top:
Test 15.re f , and bottom: Test 17.re f

iterations of ICP. Table 3 shows the results of the pre-
cise position estimation. Five positions are not estimated
correctly due to the failure in the voting algorithm, i.e.,
the number of true 3D POMFs between Train i.pts and
Test j.pts is quite small. One false localization is ex-
cluded by the large average error of ICP. The total number
of true positives is 23, so that the recall is 23/29≈ 79.3%,
and no false positives occur. Figure 11 shows the align-
ment results between Test 5.pts and Train 13.pts and be-
tween Test 7.pts and Train 8.pts after RANSAC and au-
tomatic ICP. Table 4 shows the average errors of their re-
sults. These pairs are correctly selected in Step 1, and

Table 3. Correctness of position estimation after the second
step in the area containing buildings

Total 29
Excluded by voting algorithm 5
Excluded by large ICP error 1

True positive 23

their relative locations are shown in Fig.8.
In the proposed method, the most time-consuming part

is ICP. The incorrect candidates can be excluded by the
voting algorithm. Since M is set to be 5 in the experi-
ment, the ICP should be executed 29× 5 = 145 times if
the voting algorithm is not applied. On the other hand, us-
ing the voting algorithm, ICP is executed only 37 times,
i.e., 37/29 ≈ 1.28 times for each test data.

Table 4. Average error of the two examples in Fig.11

Example Coa alig Pre alig
Train 13.pts and Test 5.pts 27.68 [mm] 11.19 [mm]
Train 8.pts and Test 7.pts 5.85 [mm] 4.88 [mm]

6.2. Experiment along the road
Since many buildings alongside the road are almost

out of the range of the LMS151, to make them more
prominent in the reflectance images as soon as possible,
reflectance images with dimensions of 530 × 1134 are
collected. A total of 33 training data (Train i.re f and
Train i.pts) and 28 test data (Test j.re f and Test j.pts)
are stored. Since the reflectance images are panoramic,
the training data and test data are collected in the converse
direction along the same path as shown in Fig.9.

6.2.1. Results of position estimation after the first step
(coarse estimation)

The results of location estimation after the first step are
listed in Table 2. In Section 4.1, M is set to be 5 as before.
The results are shown in Table 5. A total of 27 positions
of the robot are correctly estimated. In 16 positions, the
robot position is correctly estimated as the first candidate.
In eight positions, the second candidates are the actual
locations. Three positions are correctly estimated as the
third candidates. Only one position is falsely estimated,
so that the correctness ratio is 27/28 ≈ 96.4%.

6.2.2. Results of position estimation after the second
step (precise estimation)

In this experiment, since the robots move along sloping
ground and several rigid references, such as buildings, are
located far from the robots, a number of the parameters
in Algorithm 1 are set to be relatively flexible. For exam-
ple, f actor1 in (2) is 0.1, and ANGthresh of Eq. (4) is set
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(a) Original maps of Train 13.pts and Test 5.pts (b) Coarse alignment by RANSAC between
Train 13.pts and Test 5.pts

(c) Precise alignment by ICP between Train 13.pts
and Test 5.pts

(d) Original maps of Train 8.pts and Test 7.pts

(e) Coarse alignment by RANSAC between
Train 8.pts and Test 7.pts

(f) Precise alignment by ICP between Train 8.pts and
Test 7.pts

Fig. 11. Alignment results between the 5th test data and the 13th training data and between the 7th test data and the 8th training data

to be 20 degrees. In order to avoid the influence of road,
which has a relatively homogeneous texture, we do not
consider triangles that have a normal vector that is verti-
cal to the ground. Table 6 shows the results of the precise
position estimation. Nine positions are not estimated cor-
rectly due to a failure in the voting algorithm. The total
number of true positives is 19, so that 19/28 ≈ 67.9% re-
call is achieved, and no false positives occur. Figure 12

shows the inliers from RANSAC in a 2D manner for the
two examples in Fig.10. Several correct POMFs are ob-
tained from branches and leaves of trees and lampposts.
The ICP is executed only 21 times, i.e., 21/28 ≈ 0.75
times for each test datum.

The proposed method is robust for the presence of mov-
ing objects such as pedestrians or cars. Fig.13 shows the
correct POMFs on 2D reflectance images including sev-
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(a) Inliers of RANSAC between Train 15.re f and Test 15.re f (b) Inliers of RANSAC between Train 13.re f and Test 17.re f

Fig. 12. Matching features between the 15th test data and 15th training data and between 17th test data and 13th training data of the
experiment along the sloping road

Table 5. Correctness of position estimation after the first
step along the road

No. 1st 2nd 3rd 4th 5th Total Correctness ratio
Correct

localization 16 8 3 0 0 27 96.4%

Table 6. Correctness of position estimation after the second
step along the road

Total 28
Excluded by voting algorithm 9
Excluded by large ICP error 0

True positive 19

eral pedestrians and a car in the bottom image. Fig.14
shows different cars parked in almost the same place but
don’t make any difference. It is clear that the proposed
method using BoF and outlier removal hardly be influ-
enced by these disturbances.

6.3. Parameters setting
In fact, four non-coplanar 3D true POMFs are enough

for the calculation of a rigid transformation. In algorithm
1, parameters Dthresh, D∆thresh, and ANGthresh are set
mainly depending on the attribute of LMS151 (see Table
1). As an extreme example, if only the right candidate cor-
respondences in the results of BoF are processed by auto-
matic ICP, f actor1 and f actor2 are set to be small to keep
true POMFs. Consequently, all of right candidate cor-

Fig. 13. The rectangles in the training image show the mov-
ing objects which are not in the test image.

respondences can be correctly aligned by automatic ICP.
On the other hand, small f actor1 and f actor2 will cause
false initial candidates for automatic ICP. This would not
only be costly(since ICP must be repeated many times),
but also lead to false final results. If f actor1 and f actor2
are set relatively to be high, the number of false-positives
can be decreased and ICP would be repeated few times.
However, the final success ratio would be low since the
chance for obtaining correct POMFs becomes low.
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Fig. 14. The rectangles show different cars parked in same
place which don’t influence the results.

7. Conclusion

We proposed and demonstrated a two-step strategy for
global localization of a mobile robot. Appearance-based
global localization and map-based global localization are
combined to improve the performance of correct posi-
tion estimation. The reflectance image, which is obtained
as a byproduct of range sensing and is independent of
the variation of the illumination condition, is used for
appearance-based global localization in the first step. Pre-
cise map-based global localization by ICP is applied us-
ing 3D local maps, which are selected by the first step. In
order to improve the performance of the 2nd step, the vot-
ing algorithm based on the 3D geometric constraints and
RANSAC-based course position estimation process are
proposed. The effectiveness of the proposed technique is
demonstrated through experiments in real environments.
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