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Abstract— We present two multi-modal panoramic 3D out-
door (MPO) datasets for semantic place categorization with
six categories: forest, coast, residential area, urban area and
indoor/outdoor parking lot. The first dataset consists of 650
static panoramic scans of dense ( 9,000,000 points) 3D color and
reflectance point clouds obtained using a FARO laser scanner
with synchronized color images. The second dataset consists
of 34,200 real-time panoramic scans of sparse ( 70,000 points)
3D reflectance point clouds obtained using a Velodyne laser
scanner while driving a car. The datasets were obtained in the
city of Fukuoka, Japan and are publicly available in [1], [2].
In addition, we compare several approaches for semantic place
categorization with best results of 96.42% (dense) and 89.67 %
(sparse).

I. INTRODUCTION

Understanding the surrounding environment is an im-
portant capability for autonomous robots and vehicles that
allows them to identify their current type of location. This
information greatly improves communication between robots
and humans [3], [4] and it allows autonomous robots to make
decisions with context-based understanding when completing
high-level tasks [S]. Moreover, if a robot has the ability to
categorize places according to their type, then it will be able
to properly execute a task even in unfamiliar surroundings.
In addition, autonomous vehicles can make decisions based
on the environmental conditions.

This paper focuses on semantic categorization of places
in outdoor scenarios where a mobile robot or vehicle should
determine the type of place where it is located. Examples of
outdoor places are shown in Figure 1. Place categorization
using 2D images has been achieved in high-level image
understanding. 2D images can be captured by a camera or
be collected by search engines, therefore, 2D image under-
standing and scene recognition are actively researched and
evaluated by using several datasets, such as ImageNET [6],
SUN database [7], or Places2 [8]. The ImageNET and
Sun datasets consist of a large collection of images with
variability in visual appearance, which can be searched using
category terms. The Places2 dataset includes images from
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Fig. 1.

images were obtained. Bottom image: Example panoramic images for forest
(1), coast (2), indoor parking lot (3), outdoor parking lot (4), residential area
(5), and urban area (6).

different scene categories that are used to train convolutional
neural networks (CNN) [9]. New images can be classified
using the provided CNN models. However, those datasets
do not provide 3D information.

To extend the scope of 2D images, 3D place categorization
has been studied. In indoor environments, several researchers
used low cost RGB-D sensors to provide sequences of depth
and color point clouds. For example, the NYU-Depth V2
dataset [10] contains segmented 3D images of indoor en-
vironments with per-frame accelerometer data. The 3DSUN
RGB-D dataset [11] is an annotated benchmark scene for
3D scene/place categorization and reconstruction. Finally, the
Kyushu University Kinect Place Recognition Database [12]
contains RGB-D sequences of indoor places divided into six
categories, i.e. corridor, kitchen, lab, office, study room and
toilet. In addition, laser scans have been used to increase the
range and resolution of panoramic point clouds in indoor
place datasets, and to add reflectance information like in the
Kyushu University Indoor Semantic Place Dataset [13].

Outdoor 3D datasets for place categorization are less
common since they need more expensive sensors and ve-
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hicles. The majority of available 3D datasets are used for
localization and mapping [14], [15] but not for high level
semantic place categorization and therefore they do not
include place labels. Only the KITTI [16] dataset includes
four categories in the labeled scans: city, residential, road
and campus. However, this dataset is used as benchmark
for other purposes such as optical flow, visual odometry, 3D
object detection or 3D tracking. In comparison to the KITT
dataset our dense MPO datasets include higher resolution
panoramic 3D point clouds. In addition all our panoramic
instances include a place label from our six categories.

In this paper, we present two Multi-modal Panoramic
3D Outdoor (MPO) datasets for outdoor semantic place
categorization in static and dynamic environments for mobile
robots and autonomous vehicles. Our datasets are recorded
by multi-modalities sensors, and provided as multi-resolution
point clouds. Each dataset consists of six place categories
including ‘forest’, ‘coast’, ‘indoor parking lot’, ‘outdoor
parking lot’, ‘residential area’ and ‘urban area’.

The dense MPO dataset consists of static panoramic scans
of dense 3D color and reflectance point clouds as shown in
Figure 1, while the sparse MPO dataset consists of real-
time panoramic scans of sparse 3D reflectance point clouds
recorded while driving a car. The datasets were obtained in
the city of Fukuoka, Japan, and are publicly available in [1],
[2]. The main motivation for creating two different sensor
modalities datasets (dense and sparse) for the same outdoor
places is to study different sensor performances, and thus
present the researchers with different options when select-
ing their sensors. In this paper we use time-of-flight laser
scanners which have the advantage of their robustness under
various environmental conditions, such as bright sunlight,
darkness, and sudden illumination changes.

In addition, we applied several approaches for place cat-
egorization to the MPO datasets using different global de-
scriptors and we obtain best categorization results of 96.42%
(dense) and 89.67% (sparse) using local binary patterns [13].

II. MPO DATASETS

We present two Multi-modal Panoramic 3D Outdoor
(MPO) Datasets for semantic place categorization in
static and dynamic environments for mobile robots and
autonomous vehicles. The first dataset contains dense
panoramic point clouds obtained using a FARO sensor. The
second dataset contains sparse point clouds acquired using a
Velodyne sensor.

A. DENSE MPO DATASET

The dense MPO dataset consists of 650 static panoramic
scans of high resolution dense 3D point clouds obtained
using a FARO Focus3D laser scanner. Each panoramic scan
is composed of three synchronized sensor modalities: depth,
reflectance, and RGB color.

The FARO Focus3D sensor has a maximum range of 150
meters and a field of view of 360° horizontally and x 300°
vertically (Figure 2). Our dataset contains 3D panoramic
point clouds of 5140 x 1757 pixels (total of 9,030,980

| :
Fig. 2. Left: Vehicle setup for data acquisition. Right Top: Velodyne HDL-
32E laser scanner (2), Kodak PIXPRO SP360 camera (3), and GARMIN
GPS 18x LVC (4) for the sparse MPO dataset. Right Bottom: FARO
Focus3D sensor (1) for dense MPO dataset.

pixels) with 0.07° horizontal and 0.17° vertical angular res-
olution. This sensor is additionally equipped with a rotating
camera which is calibrated with the laser sensor.

The FARO sensor was installed on top of a vehicle at a
height of 1.8 meters as shown in Figure 2. Each scan was
obtained in a static way with the vehicle stopped. The mea-
surement time needed to obtained one synchronized depth
and color panoramic scan was 3 minutes. Approximately,
the depth and reflectance images takes 1 minute, and color
images take 2 minutes. For each scan we moved the car 10-
100 meters, stopped and took the full panoramic scan and
color images. We repeated this process several times in each
area. Point clouds and color images were synchronized oft-
line using the SCENE software provided by FARO, which
processes and manages scanned data easily and efficiently
by recognizing primitive objects as well as scan registration
and positioning.

3D panoramic scans were label with the corresponding
category (‘forest’, ‘coast’, ‘indoor parking lot’, ‘outdoor
parking lot’, ‘residential area’ or ‘urban area’.) The full
dataset contains 650 panoramic scans distributed among the
six categories according to Table I. For each category we
recorded seven sets of scans corresponding to different phys-
ical places inside the same category. Example 3D panoramic
scans are shown in Figure 3 in their three sensor modalities:
depth, reflectance, and RGB color. The full dense MPO
dataset is publicly available in [1].

Each panoramic scan in the dense MPO dataset is stored
in a PTX file, which contains a header and one line for each
point in the format X, Y, Z, intensity, R, G, B.” Full details
on this files can be obtained from the dataset’s website [1].

B. SPARSE MPO DATASET

The sparse MPO dataset contains a total of 34,200 sparse
3D panoramic scans obtained using a Velodyne HDL-32E
laser scanner sensor. This sensor contains a vertical field
of view of 41.3° ranging from 10.67° to —30.67° and
a horizontal field of view of 360°. Each panoramic 3D
panoramic point cloud has size of 32 x 2166 with horizontal
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TABLE I
DISTRIBUTION OF 3D PANORAMIC SCANS BY CATEGORY IN THE
DENSE MPO DATASET

Number of scans by location

Category Setl Set2 Set3 Set4 Set5s Set6 Set7 Total
Coast 14 14 16 12 17 14 16 103
Forest 16 16 17 18 16 16 17 116

Indoor parking 16 | 16 | 13 | 15 | 17 | 13 | 13 105
Outdoor parking | 15 | 17 | 16 | 15 | 15 | 14 | 16 108
Residential area | 14 | 16 | 14 | 15 | 16 | 15 | 16 106

Urban area 16 | 17 16 16 | 15 16 | 16 112
Total number of panoramic scans 650
TABLE II

DISTRIBUTION OF 3D PANORAMIC SCANS BY CATEGORY IN THE
SPARSE MPO DATASET

o
ZE

Indoor parking lot

Number of scans by location
Category Setl Set2 Set3 Set4 Set5 Total
Set6 Set7 Set8 Set9 | SetlO
B o 3
Forest o1 ] 47
Indoor parking lot 24212 igg ggg 2471-431 igg 4780
Outdoor parking lot 2;2 g;? ggg igg g; 5445
Residential area g;g ZEIS; 33(7) ;%‘ 223 7464
Utban area 55610 —So5— 06 | 79| ST
o |80 e e L

angular resolution of 0.17° and vertical angle resolution of
1.33°. Scans were acquired at 2 Hz of sampling frequency.

In addition the dataset contains GPS information obtained
by a Garmin GPS 18x LVC, which stored in NMEA 0183
format at a frequency of 2 Hz.

Additionally, the dataset provides panoramic color images
captured by Kodak PIXPRO SP360 camera a reference of
scanning environment. Each color image covers 360° and
has a resolution of 16.36 Megapixels. Images were acquired
6~7 Hz.

The sensors where located on a vehicle as shown in Fig. 2.
The sparse data was acquired while driving a vehicle at
30~50 kph throw different areas of Fukuoka city as shown
in Fig. 1. The maximum displacement error of a scan is 1.4m
at the maximum velocity of 50kph with 10Hz of scanning
speed for a single scan.

The dataset is divided into the same six place categories as
the dense MPO dataset, i.e. ‘forest’, ‘coast’, ‘indoor parking
lot’, ‘outdoor parking lot’, ‘residential area’ or ‘urban area’.
For each category we recorded seven trajectories correspond-
ing to different physical places inside the same category.
Table II shows the distribution of the sparse MPO dataset.
The full sparse MPO dataset is available at [2].

I1I. PLACE CATEGORIZATION IN MPO DATASETS

In this paper we present several approaches for semantic
place categorization and compare their their effectiveness in
our two MPO datasets.

Fig. 3. Dense MPO Dataset: examples of high-resolution range (top),
reflectance (middle) and color (bottom) panoramic images for six outdoor
place categories: forest, coast, indoor/outdoor parking lot, residential and
urban area. In range images, brighter colors indicate closer distances and in
reflectance images, darker colors indicate higher intensity.

A. Feature Descriptors

In this work we compared three feature descriptors that can
be applied to 3D and multimodal sensor cues: local binary
patterns (LBP) [17], spin images [18], and textons [19].

1) Local Binary Pattern: LBP [17] is a visual trans-
formation applied to greyscale images that describes the
relationship between the values of each pixel and their
neighbors. Formally, given a pixel i = (x;,y;) in an image
I, and its P-neighborhood .45 (i), the new decimal value for
pixel i in the transformed imaged Iy pp is given by:

P—1
Igp(i) = Y LBP(I(i) —1(ji))2",Vjx € Ap(i), (1)
k=0

where {jo, j1,---,jp—1} are the pixels in the P-neighborhood
Ap(i) and LBP(.) is a binary operator over the difference z
of two pixels’ values defined as:
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Fig. 4. Sparse MPO Dataset: examples of range (top) and reflectance
(bottom) panoramic images for six outdoor place categories: forest, coast,
indoor/outdoor parking lot, residential and urban area. In range images,

brighter colors indicate closer distances and in reflectance images, darker
colors indicate higher intensity.

1 ifz>0
LBP(Z):{ 0 ifz<0

Each new pixel value in the transformed image image I pp is
a decimal values d in the range [0, ...,255]. In a final step, the
transformed image Iy pp is represented by a histogram hypp
of length [ in which each bin /;gp(1) indicates the frequency
of appearance of the decimal value d as:

2)

hupp(l) =} 7 (ILgp(i) = d), (3)

where .#(.) denotes the indicator function which returns 1
if its argument is true, and O otherwise. In our case, the
LBP values are restricted to the 8-neighborhood, and thus
the dimension of the final histogram is 256. LBPs have been
successfully applied to categorization of indoor and outdoor
categorization in single and multiple sensor modalities [12],
[13], [20].

2) Spin image: The spin image [18] is one of popular
technique for surface matching and 3D object recognition.
The conventional spin images encode the global properties
of any surface in an object-oriented coordinate system. In this

paper we applied spin image in a scanner-oriented view point
in cylindrical coordinate system rather than in an object-
oriented view point using 3D surface of object. A entire 3D
point cloud can be represented as the scanner-oriented image
with the cylindrical coordinate system when the position of
laser scanner is (0,0,0) for each scan data. To achieve this
we use the tangent plane through oriented perpendicularly to
n and the line through parallel to [18].

3) Texton: Texton [19] is a filter-based technique based
on Leung-Malik filter banks and the maximum response
filter bank contains filters at multiple orientations and scales.
In standard texton, the maximum response filter is applied
among several Gaussian and Laplacian of Gaussian filters
with the same scale, but different orientations are selected.
In our case, we adopted the maximum response filter among
filters with different scales but same orientation in order to
evaluate the directions of edges and not the size.

B. Classification Method

We use support vector machines (SVM) [21], [22] with a
radial basis function (RBF) kernel for the final categorization
of places. Multi-class classification is performed by a “one-
against-one” approach [23]. In our experiments, we use the
LIBSVM library [24]. Following the method reported in [25],
the parameters C and Y are selected by a grid search using
cross-validation. The ranges of C and y are C € [27!,--. 2%0]
and y€ [2729)... 2% in the grid search.

For trajectories in the sparse MPO dataset we additionally
apply a classic linear-time majority vote technique [26] for
consecutive frames as follows. Given a time ¢, we define M
previous consecutive frames {C;,C,_1,---,C;_py}. Finally a
majority vote is obtained from the classification results of
the M as:

G, Final — Majority vote(C;,Cy_1,--,Cr_pm). (4)
where C; indicates the classification of frame ¢ using SVM.

IV. EXPERIMENTAL EVALUATION

We applied the previous approaches for place categoriza-
tion to our dense and sparse MPO datasets respectively.

A. DENSE MPO DATASET

We applied the previous feature descriptors and a SVM
classifier to the dense MPO dataset using different modal-
ities independently. The classification results are shown in
Table III. Best classification results are obtained using LPBs.
These results are in accordance with our previous work [13].
In particular, reflectance data provide the highest correct
classification ratio. Detailed classification results using LBP
and reflectance are shown in Table IV for all six place
categories.

In addition, we present results combining laser and re-
flectance modalities as in [12] . Combination of modalities is
achieved by concatenating the feature vectors of each modal-
ity into a single vector, and then applying SVMs [12]. This
multi-modal categorization gets a CCR of 95.67 +3.69%.
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TABLE IV

CONFUSION MATRIX FOR REFLECTANCE LBP IMAGES FOR THE DENSE MPO DATASET (CCR %)

Coast Forest Indoor parking | Outdoor parking | Residential area Urban area
Coast 9345+17.39 | 6.54+17.39 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Forest 8.95+8.27 91.04+8.27 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
Indoor parking 0.00+0.00 0.00+0.00 100.00 £ 0.00 0.00+0.00 0.00+0.00 0.00+0.00
Outdoor parking 1.91+2.92 0.00+0.00 0.00+0.00 98.08 +2.92 0.00+0.00 0.00+0.00
Residential area 1.33+2.68 0.00+0.00 0.00+0.00 0.00+0.00 97.32+4.43 1.334+4.00
Urban area 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 1.87+4.00 98.12+4.00
TABLE V

CONFUSION MATRIX (CCR %) OF LBP IMAGES WITH MAJORITY VOTE FOR THE SPARSE MPO DATASET.

Coast Forest Indoor parking | Outdoor parking | Residential area Urban area
Coast 82.99+4.19 | 5.20+0.54 0.00£0.00 7.15+£2.20 1.50£0.05 3.16 £0.56
Forest 8.64+£1.12 | 90.87+1.20 0.00£0.00 0.49+0.01 0.00+0.00 0.00+0.00
Indoor parking 0.00£0.00 3.31+0.01 93.95£0.65 2.164+0.56 0.5940.02 0.00+0.00
Outdoor parking | 0.9640.06 0.00£0.00 5.25+0.12 89.16 +1.31 2.44+0.26 2.19+£0.26
Residential area 0.45+0.01 0.00£0.00 0.00+0.00 2.704+0.01 93.23+0.20 3.63+0.20
Urban area 0.0040.00 0.0040.00 0.00+0.00 3.84+0.76 8.76+0.79 87.394+0.20
TABLE III 92%
CORRECT CLASSIFICATION RATIO (CCR %) RESULTS FOR THE DENSE
0,
MPO DATASET. 0%
88%
Descriptor Range Reflectance Greyscale ‘\‘\’\‘\
Spin image [18] | 89.43 +0.00 - - ez 86%
LBP [13] 94.35+2.67 | 96.42+2.68 93.86+3.85 8 84%
Texton [19] 89.04 £5.58 | 73.59+13.73 | 81.81+10.67 ¢
82%
TABLE VI 20%
CORRECT CLASSIFICATION RATIO (CCR %) FOR THE SPARSE MPO °
DATASET 78%
1 20 40 60 80 100
Single frame | Majority vote Number of Votes
Spin image [18] | 79.23+4.51 88.34+0.12 )
LBP [13] 83.98 £4.59 89.67 +£0.21 ——Spin-Image LBP
Fig. 5. Majority vote categorization for different consecutive frames M.

B. SPARSE MPO DATASET

We present categorization results for the sparse MPO
dataset using range data by comparing single observations
VS a majority vote over the last M frames. Table VI shows
the corresponding CCRs. For the majority vote we selected
M = 40 since it provided the best categorization results ac-
cording to Fig. 5. According to this results the majority vote
approach significantly improves the outdoor categorization
results. Finally we present detailed categorization results for
the six place categories using LBP and majority vote in
Table V.

V. CONCLUSIONS

We presented two multi-modal panoramic 3D outdoor
(MPO) datasets for semantic place categorization with six
categories: forest, coast, residential area, urban area and
indoor/outdoor parking lot. While the dense MPO dataset
contains static high density multi-modal panoramic 3D point
clouds, the sparse dataset contains sparse panoramic point
clouds captured by a moving vehicle. Both MPO datasets are
publicly available on the Internet under [1], [2]. In addition
we have presented preliminary categorization results using
different approaches. The datasets together with preliminary

categorization results are thought to be used as benchmark
for researches interested in outdoor semantic place catego-
rization.
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