
Iterative Learning Control for a Musculoskeletal Arm:
Utilizing Multiple Space Variables to Improve the Robustness

Kenji Tahara, Yuta Kuboyama and Ryo Kurazume

Abstract— In this paper, a new iterative learning con-
trol method which uses multiple space variables for a
musculoskeletal-like arm system is proposed to improve the
robustness against noises being included in sensory information.
In our previous works, the iterative learning control method for
the redundant musculoskeletal arm to acquire a desired end-
point trajectory simultaneous with an adequate internal force
was proposed. The controller was designed using only muscle
space variables, such as a muscle length and contractile velocity.
It is known that the movement of the musculoskeletal system
can be expressed in a hierarchical three-layered space which
is composed of the muscle space, the joint space and the task
space. Thus, the new iterative learning control input is com-
posed of multiple space variables to improve its performance
and robustness. Numerical simulations are conducted and their
result is evaluated from the viewpoint of the robustness to noises
of sensory information. An experiment is performed using a
prototype of musculoskeletal-like manipulator, and the practical
usefulness of the proposed method is demonstrated through the
result.

I. INTRODUCTION

There is no doubt that human’s natural movements are
still more smooth, dexterous and sophisticated than present
robotic systems. Recently, the realization of robots that be-
have smoothly and softly as with humans is highly expected
in order to help us in our daily life. Particularly, modeling
of a control strategy of human body movements is quite
valuable for robots operated around our living space in this
regard. It is well-known in physiological and kinesiological
fields that the human’s natural movements are performed by
an adequate combination of a sensory feedback manner using
several external sensors such as a vision or tactile sensor
and a feed-forward manner obtained through sophisticated
learning and estimation strategies [1], [2]. Thus, not only
how to design both the feedback and feed-forward control
strategies, but also how to merge them adequately is impor-
tant to acquire the human’s natural movements.

Meanwhile, it is well-known in robotics field that an
iterative learning control method is quite effective for robots
to acquire a desired time-dependent movement [3], [4]. This
method is composed of a feedback manner and a feed-
forward manner similar to the human’s control strategy.
Before learning, the control input is composed only of the

K. Tahara is with Faculty of Engineering, Kyushu University, 744
Moto’oka, Nishi-ku, Fukuoka 819-0395, Japan. tahara@ieee.org

Y. Kuboyama is with Graduate School of Information Science and Elec-
trical Engineering, Kyushu University, 744 Moto’oka, Nishi-ku, Fukuoka
819-0395, Japan. kuboyama@irvs.ait.kyushu-u.ac.jp

R. Kurazume is with Faculty of Information Science and Electrical
Engineering, Kyushu university, 744 Moto’oka, Nishi-ku, Fukuoka 819-
0395, Japan. kurazume@ait.kyushu-u.ac.jp

feedback manner, and then the control signal gradually gov-
erned by the feed-forward manner according to the increase
of the number of trials. Eventually, the control input is mostly
composed of the feed-forward control manner after learning
well through several trials. The method is quite robust to
modeling errors and unknown parameters.

Until now, we have utilized the iterative learning control
scheme to a musculoskeletal arm model whose muscle
model owns a strong nonlinear characteristics [5], [6]. A
desired time-dependent end-point trajectory with an adequate
internal force can be obtained by using the proposed method.
In the previous works, the desired time-dependent trajectory
was designed in the task space, and the control signal was
designed in the muscle length space by computing inverse
kinematics from the task space to the muscle space. Thus,
the controller consisted only of the muscle space variables,
such as a length and contractile velocity of the muscle.
Meanwhile, the movement of the musculoskeletal system can
be expressed not only in the muscle space, but also the joint
space, or the task space. These spaces make a three-layered
structure, and the dynamics of the system and its controller
can also be expressed in each space. The performance of the
controller partially depends on which space the controller
is designed in, and thereby it is important and valuable to
discuss which space is better to design the controller. Ad-
ditionally, it is inevitable that sensory information includes
noises. For instance, it is known that the muscle information,
which can be measured as EEG, includes a lot of noises.
Since the kind of included noises is different in each space,
their effect to the movement is also different. There is a
possibility to be able to improve the learning controller to
be robust to these noises by using plural space variables in
this regard.

In this study, a new iterative learning control method is
proposed which utilizes plural space variables to improve
its performance and robustness against noises. The iterative
learning control input is basically composed of a linear
summation of a sensory feedback part and a feed-forward
part obtained through the iterative learning process. The
proposed control input utilizes different space variables to
compose the feedback part and the feed-forward part to be
robust to these noises. In what follows, firstly a two-link six-
muscle musculoskeletal planar arm is modeled in Section II.
Secondly, a nonlinear muscle model based on a physiological
study is presented in Section III. Next, the validity of
the proposed controller is shown by numerical simulation
results in Section IV. Finally, the practical usefulness of the
proposed controller is demonstrated through an experimental
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Fig. 1. Two-link six-muscle musculoskeletal arm model

result in Section V.

II. TWO-LINK SIX-MUSCLE MUSCULOSKELETAL ARM
MODEL

Figure 1 shows a musculoskeletal arm model used in this
study. The model is composed of two rigid links and four
mono-articular muscles and two bi-articular muscles. This
is a planar arm and then its movement is limited within a
horizontal plane. Therefore the gravity effect is ignored. Each
muscle is approximated as a linear segment, and assuming
that the mass of the muscles is included into the mass of each
link. Note that the mesurable variables are the position of the
end-point and its velocity a visual sensor, and each muscle
length and its contractile velocity by an encoder instead of
a muscle spindle.

A. Kinematics

The forward kinematics from the joint angle to the muscle
length is given as follows:

l = Gl(q) ∈ R
6, (1)

where l = [l1, l2, · · · , l6]T ∈ R
6 denotes the vector of the

muscle length, q = [q1, q2]
T ∈ R

2 denotes the vector of the
joint angle. Also, Gl(q) in (1) is a nonlinear vector function
that expresses the relation between each joint angle and each
muscle length. The time derivertive of (1) is given as follows:

l̇ = WTq̇ ∈ R
6, (2)

where WT ∈ R
6×2 is the Jacobian matrix for each muscle

contractile velocity with respect to each joint angular veloc-
ity, and it is called “the muscle Jacobian matrix” hereinafter.

The relation between the vector of the muscular force
fm = [fm1, fm2, · · · , fm6]

T ∈ R
6 which depends on a

control signal to be designed in the next section, and the
vector of the joint torque τ = [τ1, τ2]

T ∈ R
2 is given by the

principle of virtual work in the following manner:

τ = Wfm ∈ R
2, (3)

Assume that W ∈ R
2×6 is of row full-rank during move-

ment, and then the inverse relation of (3) is given as follows:

fm = W+τ +
(
I6 −W+W

)
k ∈ R

6, (4)

where W+ = WT(WWT)−1 ∈ R
6×2, I6 ∈ R

6×6 denotes
an unit matrix, and k ∈ R

6 denotes an arbitrary vector. The
physical meaning of the second term of the right-hand side of
(4) is an internal force space which is generated by redundant
muscles. In addition, the statics between τ and the vector of
the output force of the end-point in the task space F ∈ R

2

is given as follows:

τ = JTF ∈ R
2. (5)

where J ∈ R
2×2 denotes the Jacobian matrix for the end-

point velocity with respect to each joint angular velocity.
Substituting (5) into (4) yields:

fm = W+JTF +
(
I6 −W+W

)
k ∈ R

6. (6)

Equation (6) shows the inverse relation of the statics between
fm and F . Meanwhile, the forward kinematics from the joint
angle q ∈ R

2 to the end-point position in the task space
x ∈ R

2 is given as follows:

x = Gx(q) ∈ R
2, (7)

where Gx(q) is a nonlinear vector function that expresses
the forward kinematics from the joint angle to the end-point
position. The time derivertive of (7) is given as follows:

ẋ = Jq̇ ∈ R
2. (8)

Assume that J is of full-rank, thus the inverse relation of
(7) and (8) can be given in the following way:

q = G−1
x (x) ∈ R

2 (9)

q̇ = J−1ẋ ∈ R
2, (10)

where G−1
x (x) denotes a nonlinear vector function which

means the inverse kinematics from the end-point position to
the joint angle. Also, (10) denotes the differential inverse
kinematics from the end-point velocity to the joint angular
velocity. Substituting (9) into (1), and (10) into (2), respec-
tively, yields

l = Gl

(
G−1

x (x)
) ∈ R

6 (11)

l̇ = WTJ−1ẋ ∈ R
6. (12)

Equations (11) and (12) show the inverse kinematics from
the task space to the muscle space, and these are utilized in
the feed-forward manner.
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B. Nonlinear Muscle Model

A modified Hill’s muscle model has been utilized in our
previous works [5], [6]. It can express a nonlinearity of the
skeletal muscle with respect to the muscle contractile veloc-
ity. However, it does not consider any nonlinear elasticity in
which the skeletal muscle intrinsically owns. In this study,
another nonlinear muscle model is newly modeled based on
the Audu’s model [7]. The Audu’s model consists of two
independent parts, an active contractile element depending
on the muscle activation level, and a passive nonlinear elastic
element. Since Audu’s model considers only a static situation
and there is no effect of the muscle contractile velocity,
both active and passive viscous elements are newly added to
the Audu’s model in this study. The active viscous element
depends on the muscle activation level, and the passive
viscous element is a constant. Basically, both the viscous
elements have been modeled as a part of our previously
proposed model. Namely, the new muscle model includes
Audu’s model and a part of our previous model. It is is
given as follows:

fm(u, l, l̇) = u− p1e
p2(l−l0) − (c1u+ c2)l̇, (13)

where fm(u, l, l̇) is the muscle output force, u signifies the
control input to the muscle, l stands for the length of the
muscle, l0 indicates the intrinsic rest length of the muscle,
l̇ denotes the contractoin velocity of the muscle, p1, p2, c1
and c2 are a positive constant, respectively. Namely, the first
term of the RHS indicates the active contractile element, the
second term of the RHS indicates a passive nonlinear elastic
element, and the last term of the RHS indicates both the
active and passive viscous elements which are newly added
to Audu’s model.

III. ITERATIVE LEARNING CONTROL LAW

The PI-type iterative learning control method [8] is in-
troduced to accomplish a given desired time-dependent tra-
jectory. Time series error datasets regarding position and
velocity are stored during one trial to compose an input for
the next trial. The datasets are multiplied by the learning
gains, and added to the control input for the next trial.

As mentioned in Section I, there are three candidates
of state space to compose the iterative learning control
input, which are the muscle space, the joint space, and the
task space. Therefore, which spaces are better to compose
the control input is quite important to obtain a desirable
performance. In addition, it is inevitable that some noises are
included into sensory information, and they strongly affect
the movement of musculoskeletal system. Several different
types of noises are included into the sensory information
obtained from each space. Therefore, the robustness to the
noises are also different according to which spaces the
controller is designed in. In order to improve the robustness
to the noises included into the sensory information, a new
iterative learning control method is proposed which utilizes
plural state space variables. In this paper, the task space is
chosen to design the feedback manner, and the muscle space

is chosen to design the feed-forward manner as one of the
case studies. The control input to the muscles at the ith trial
is given as follows:

ui =−W+
i J

T
i (KpΔxi −KvΔẋi)

+
(
I6 −W+

i W i

)
+ vi, (14)

where the subscript i indicates the trial number, Kp =
diag[kp1

, kp2
] ∈ R

2×2 > 0 denotes the task space position
feedback gain, Kv = diag[kv1

, kv2
] ∈ R

2×2 > 0 signifies
the task space velocity feedback gain, and vi is the feed-
forward term obtained through the iterative learning process.
The position and velocity errors in the task space are given
as Δxi = xi − xd ∈ R

2 and Δẋi = ẋi − ẋd ∈ R
2 where

xd and ẋd are the desired time-dependent end-point position
and velocity trajectories in the task space, respectively. The
feed-forward term vi ∈ R

6 is designed not in the task space
similar to the feedback manner, but in the muscle space, and
it is updated in the following manner:

vi =

{
0 if i = 1

(1− β)vi−1 −
(
ΦΔli−1 +ΨΔl̇i−1

)
if i > 1

,

(15)

where Φ = diag[φ1, φ1, · · · , φ6] ∈ R
6×6 > 0 and Ψ =

diag[ψ1, ψ2, · · · , ψ6] ∈ R
6×6 > 0 are the position and

velocity learning gain matrices, respectively. The position
and velocity errors in the muscle space are given as Δli =
li− ld ∈ R

2 and Δl̇ = l̇i− l̇d ∈ R
2 where ld ∈ R

6 and l̇d ∈
R

6 are the desired muscle length and contractile velocity
associated with the given desired time-dependent end-point
position and velocity trajectories in the task space xd and
ẋd. They are given by computing the inverse kinematics in
the following way:

Δli = Gl

(
G−1

x (xi)
)−Gl

(
G−1

x (xd)
)
, (16)

Δl̇i = WT
i J

−1
i Δẋi. (17)

The noises included into the sensory information are as-
sumed to be Gaussian noise in this study. It is known that an
error of the initial condition between each iterative trial, and
a fluctuation of the dynamics regarding some noises make the
overall system unstable when utilizing the iterative learning
control method. In order to overcome the effect of the noises,
Arimoto [9] has introduced a forgetting factor in the iterative
update law. Using the forgetting factor guarantees that the
final convergence trajectory of the system after learning well
is on the vicinity of the desired trajectory. In (15), β denotes
the forgetting factor, and it must be chosen so as to satisfy
0 < β < 1. Assume that the sensory information of the
muscle length and the end-point position, and their each
velocity independently includes Gaussian noise, respectively.
The magnitude of the noise for the end-point position and
velocity in the task space is assumed to be up to 4% of
the actual information, and that for the muscle length and
contractile velocity is assumed to be up to 50% of the actual
information. This is because we assume that the end-point
position and velocity are measured by eyes whose obtaind
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TABLE I
PHYSICAL PARAMETERS OF THE TWO-LINK SIX-MUSCLE ARM MODEL

Length Mass Inertial moment CoM position
[m] [kg] [kg·m2] [m]

1st Link 0.31 1.93 0.0141 0.165
2nd Link 0.34 1.52 0.188 0.17

TABLE II
MUSCLE PARAMETERS

Muscle l0 [m] p1 p2 c1 c2

f1 0.1 4.0 15.0 10.0 100.0
f2 0.055 4.0 15.0 10.0 100.0
f3 0.34 4.0 15.0 10.0 100.0
f4 0.25 4.0 15.0 10.0 100.0
f5 0.2 4.0 15.0 10.0 100.0
f6 0.17 4.0 15.0 10.0 100.0

information is relatively accurate, and the muscle length and
contractile velocity are measured by a muscle spindle whose
obtained information includes a large electrical noise.

IV. NUMERICAL SIMULATIONS

Numerical simulation results are shown here to verify the
robustness of the proposed controller. Each physical param-
eter and gain is shown in Table I to III. The desired time-
dependent trajectory is designed subject to the minimum
jerk criterion proposed by Flash and Hogan [10], which
minimizes the following performance index C.

C =

∫ T

0

‖...
x(t)‖2dt, (18)

where T is a duration time of the movement, and
...
x stands

for a jerk of the end-point in the task space. Note that the
minimum jerk criterion is used in the simulation as one
of the case studies, and any other physiological hypotheses
can be utilized instead of the minimum jerk criterion. The
desired trajectory is designed as a circle in the task space.
By calculating (18), it is given as follows:

xd(t) = x0 +

[
R cos

(
2πω

(
t
T

))−R
R sin

(
2πω

(
t
T

)) ]
∈ R

2 (19)

ω
(

t
T

)
= 6

(
t
T

)5 − 15
(

t
T

)4
+ 10

(
t
T

)3
, (20)

where x0 denotes the initial position and is set to be
[−0.02, 0.46]T, and R denotes the radius of the circle and is
set to be 0.1 [m]. The duration time T is set to be 1 [s].

In order to show the advantage of the new controller,
three types of numerical simulations are conducted. One
is using the proposed controller that is composed of both
the task and muscle space variables. The others are using
a conventional iterative learning controller that is composed
of either the task space or the muscle space variables. As
mentioned in Section III, in all the simulations, each end-
point position and velocity information includes Gaussian
noise whose magnitude is up to 4% of the actual information,
and each muscle length and contractile velocity information
includes Gaussian noise whose magnitude is up to 50% of
the actual information.

TABLE III
GAINS

Feedback Gain Ktp = 30I2 Ktv = 20I2

Learning Gain Φm = 160I6 Ψ = 200I6
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Fig. 5. History of integral square errors of the end-point position according
to the number of trials: using both the task and muscle space variables, using
only the task space variables, and using only the muscle space variables

Figure 2 shows the loci of the end-point position in the
case of using the new controller. Figures 3 and 4 show
the loci of the end-point position when the controller is
designed using either the task space or the muscle space
variables, respectively. We see from these figures that the
end-point position trajectory in all cases mostly converges
to the vicinity of the desired one according to the increase
of the number of trials. Clearly, the performance of the newly
proposed controller is better than that of other conventional
iterative learning control methods.

Figure 5 shows the history of integral square errors of
the end-point position according to the number of trials in
each simulation. We see from the figure that the integral
square error gradually diverges according to the increase of
the number of trials when using only the task space variables.
Meanwhile, the error increases and decreases intensely and
its amplitude is relatively large when using only the muscle
space variables, although it does not diverge unlike that of
using only the task space variables. In contrast, clearly the
integral square error is smaller than that of other cases in the
case of using the new controller. Thus, it is confirmed that the
performance of the new iterative learning controller is better
than other conventional iterative learning controller, even
though the sensory information includes Gaussian noises,
particularly, the sensory information of the muscle space
variables includes up to 50% of the actual information.

V. EXPERIMENT

An experimental result is shown here to demonstrate the
practical usefulness of the proposed controller. A two-link
six-muscle wire-driven planar arm developed in the study
is shown in Fig. 6 Six wires, which are made of Kevlar
produced by DuPont, are utilized to mimic the muscle-like
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Fig. 2. Loci of the end-point position when the
controller is designed using both the muscle and
task space variables
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Fig. 3. Loci of the end-point position when the
controller is designed using only the task space
variables
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controller is designed using only the task space
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Fig. 6. Experimental setup of the two-link six-muscle wire-driven planar
arm system

TABLE IV
PHYSICAL PRAMETERS OF THE EXPERIMENTAL SETUP

Length Mass Inertial moment CoM position
[m] [kg] [kg·m2] [m]

1st Link 0.21 0.97 0.063 0.05
2nd Link 0.23 0.03 0.001 0.08

driven mechanism. They are connected to each link and six
DC-motors through several pulleys. Each physical parameter
of the system is shown in Table IV. The actuators are
produced by FAULHABER which each has a 1:13 ratio gear
head and a rotary encoder. The CCD camera to measure the
position of the end-point in the task space is Dragonfly2
which can capture a visual image in every 33 [ms]. The
overhead view of the experimental setup is shown in Fig. 7.

In order to show the performance of the new controller for
various kinds of desired trajectories, the desired end-point
trajectory in the experiment is designed as a linear segment
that is different from the simulation. It is given as follows:

xd(t) = x0 + (xf − x)ω
(

t
T

)
(21)

where x0 ∈ R
2 is the initial position, xf ∈ R

2 is the final
position of the end-point respectively, and ω has already
shown in (20). The concrete value of each x0, xf and

2-link 6-muscle Planar Arm

CCD Camera

Fig. 7. Overhead view of the experimental setup

the loci of the desired trajectory are shown in Fig. 8 The
duration time T is set to be 3 [s]. In the experiment, the
nonlinear muscle model is computationally implemented as
a soft-ware. In order to save substantial time, a numerical
simulation of the iterative learning in a thousand times
trials is performed, and finally acquired control input by
the simulation is utilized as the initial control input for the
experiment before performing the experiment. The iterative
trial number is ten times in the experiment.
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Fig. 8. Desired trajectory of the end-point in the task space
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Fig. 9. Loci of the end-point position in the experiment

The loci of the end-point trajectory are shown in Fig.
9. We see from the figure that the end-point trajectory at
the first trial is slightly different from the desired one, even
though each gain is well-tuned. This is because there still
remain certain modeling errors even though the initial control
input is obtained by the deliberate simulation beforehand.
The trajectory tracking error is gradually reduced according
to the increase of the number of trials. In the 10th trial, the
trajectory of the end-point converges to the vicinity of the
desired one. The remained small tracking error comes from
the noise included in the visual information. Additionally,
the resultant trajectories includes a little oscillation. This
comes from that the experimental visual servoing system
has a considerable time-delay which comes from the low
sampling rate (33 [ms]) of the visual sensor. It is not serious
unless high frequency-domain movements are necessary for
the robot, and the error is acceptably small enough in this
study. In other words, the experimental results demonstrated
that the proposed iterative learning control method is prac-
tically useful even though there exist the nonlinear muscle

dynamics, the noises and such time-delay.

VI. CONCLUSION

In this paper, the new iterative learning control method
for the musculoskeletal arm system was proposed. Firstly,
kinematics of the system and the nonlinear muscle dynamics
were given. Next, the new iterative learning controller was
designed. The controller is composed of two parts. One is
the feedback input which consists of the task space variables,
and the other is the feed-forward input obtained through
the iterative learning process which consists of the muscle
space variables. The results of numerical simulation showed
that the proposed controller is more robust against the
sensory noises than any conventional iterative learning con-
trol method, even though there exists the nonlinear muscle
dynamics. Finally, the practical usefulness of the proposed
controller was demonstrated through the experimental result.
In this paper, the relation and analogy between the proposed
control strategy and several physiological hypotheses were
not discussed explicitly. We know that it is important to
reveal such relation and analogy in order to emphasize the
physiological plausibility of the proposed method. Since
many physiological works dealing with the relation between
the sensory feedback and feed-forward manner have been
studied [11–13], we would like to develop the relation
between our proposed methodology and such physiological
studies in the future works. Also we would like to give
the stability and convergence of the proposed controller
theoretically.
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