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Abstract— Repeated patterns are useful clues to learn pre-
viously unknown events in an unsupervised way. This paper
presents a novel method that detects relatively long variable-
length unknown repeated patterns in a motion sequence effi-
ciently.

The major contribution of the paper is two-fold: (1) Partly
Locality Sensitive Hashing (PLSH) [1] is employed to find
repeated patterns efficiently and (2) the problem of finding
consecutive time frames that have a large number of repeated
patterns is formulated as a combinatorial optimization problem
which is solved via Dynamic Programming (DP) in polynomial
time O(N'T'/*) thanks to PLSH where N is the total amount
of data. The proposed method was evaluated by detecting
repeated interactions between objects in everyday manipulation
tasks and outperformed previous methods in terms of accuracy
or computational time.

I. INTRODUCTION

Recognizing human activity is one of the fundamental
techniques in order to assist humans in everyday environment
using robotics technology. Many researchers have designed a
variety of task-dependent recognizers that identify actions as
well as capture the necessary parameters to describe them
[2], [3], [4]. However, there are huge variety of human
activities in everyday life, it is not practical to prepare
recognizers for all of them. Thus, a mechanism to learn
new knowledge, new recognizers, in an unsupervised way
is required.

The goal of this study is to develop an efficient method that
detects previously unknown repeated patterns in an observa-
tion without task-dependent knowledge as a basis to realize
the above mentioned mechanism. The basic idea behind this
is if a particular pattern appears many times in a long-term
observation, this pattern must be meaningful to a user or
to a task. These patterns are good candidates for important
human actions and can be used to train recognizers, to learn
personal habits, to predict a user’s next action, etc.

The major contribution of the paper is two-fold. The
first contribution is that Partly Locality Sensitive Hashing
(PLSH) [1] is employed to find repeated patterns efficiently
in a framework of approximate nearest neighbor search. The
second contribution is that the problem of finding variable-
length repeated patterns is formulated as a combinatorial
optimization problem which is solved via a global opti-
mization framework using Dynamic Programming (DP) in
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Fig. 1.

Repeated patterns in a time series data.

polynomial time O(N'*1/%) thanks to PLSH where N is
the total amount of data.

The remainder of the paper is organized as follows. A
survey of the related research is given in Section II and
an overview of the algorithm is presented in Section III.
PLSH is explained in Section IV and the global optimization
framework is explained in Section V. The experimental
results are presented in Section VI and this paper concludes
in Section VIL

II. RELATED WORK

While there has been a large body of work regarding
efficiently locating previously known patterns in a time series
data [5], [6], we focus on locating previously unknown
repeated patterns in this study as shown in Fig. 1. Finding
unknown repeated patterns, or motifs, has been a well-
known task in the bioinformatics community [7], in the data
mining community [8], [9], [10] and in the motion analysis
community [11], [12].

In contrast to finding known-length repeated patterns [7],
[8], [10], several approaches based on Dynamic Program-
ming (DP) have been proposed to deal with unknown-length
repeated patterns in quadratic time [11].

In our previous work [13], we proposed a method that
finds repeated patterns in O (N log V) time by counting the
number of repeated patterns exactly using kD-tree, however
the hidden constant becomes linear with respect to NV in the
worst case that increases the computational time.

To reduce computational time, Meng et al. proposed a
method that finds K near neighbor data points using Locality
Sensitive Hashing (LSH) at each time frame and connects
them along time axis so as to find consistent repeated patterns
in O(N'*+1/2) time [12]. However, when the total amount of
data becomes large, the number of data in each hash bucket
also becomes large. Thus, the actual computational time also
becomes large.

Tanabe et al. proposed Partly Locality Sensitive Hashing
(PLSH), an extension to LSH, to find repeated patterns much
efficiently[1]. The proposed method extends [1] to work with
newly defined pattern density in order to deal with repeated
patterns robustly.
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III. OVERVIEW OF THE ALGORITHM

Fig. 1 shows an example of the problem of interest. Given
a long time series data of d dimensions, the task is to find
unknown repeated patterns efficiently where minor variation
of shape and length is allowed.

Fig. 2 shows a 2D slice of a time series data. If a data
point o(t) at time ¢ belongs to a set of repeated patterns,
many similar shaped patterns exist at around the data point.
So, a sequence of data points that have many other data
points in their neighborhood can be considered as a good
candidate for a repeated pattern.

To find candidate repeated patterns, neighborhood is de-
fined as the inside of a hyper sphere of radius R in d
dimensional space and pattern density, the length of the
segments in the sphere, is defined as

D) = Y lo(i)—o(i+1) (1)
i€S(t)
where S(t) = {i; |o(i) — o(t)|| < R}.
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Fig. 2. Calculation of pattern density.

Then, the task to find sequences of data points that have
large pattern density is solved efficiently as follows.

At time ¢ = 1, the linked list is initialized by checking
all NV data points so that the elements in the list stores the
endpoints, i.e. the start time (st) and the end time (ed), of all
the segments inside the sphere as in Fig. 2 (a).

From time ¢t = 2 to ¢t = N, the linked list is updated
by shifting the endpoints of each segment so that they lie
exactly on the boundary of the sphere as in Fig. 2 (b). We
can expect that the amount of shift between frames is very
small, 0 or 1 in most cases, so the time to update the linked
list can be considered as a constant. When a segment goes
outside the sphere, it is removed from the linked list. When
two segments are connected together, the two corresponding
elements in the linked list are merged as in Fig. 2 (c).

When a new segment enters into the sphere, we have to
detect it and add it to the linked list as in Fig. 2 (d). For
this, if we check all N data points, it takes quadratic time
in total. Instead, we randomly sample data points around the
current data point, and add them to the linked list if they are
inside the sphere and are not yet included in the linked list.
Here, a new segment is not necessarily detected when it just
enters into the sphere, because we can expect that it will be
detected in the subsequent steps anyway if it is sufficiently
similar to the current segment. When a segment is detected
later, the pattern density in the past is modified at that time.

To sample data points inside the sphere efficiently, Partly
Locality Sensitive Hashing (PLSH) is proposed as explained
in the next section.

A segment in the sphere can be divided into two segments
as in Fig. 2 (e). Since only the endpoints of segments
are stored in the linked list, division cannot be detected
immediately. To solve this problem, we randomly sample
data points around the past data point o(t — Tdelay) by
PLSH. If a sampled data point is outside the sphere but
is included in the linked list, that means the corresponding
segment is divided and the linked list should be modified.
A divided segment is not necessarily detected when it just
begins to leave the sphere, because we can expect that it will
be detected in the subsequent steps anyway if it leaves the
sphere. When a divided segment is detected later, the pattern
density in the past is modified at that time.

The difference from [13], [1] is that they calculate the
number of nearby segments which is sensitive to outlier
segments found at the boundary of the sphere, while we
calculate the density of segments which is much stable,
Furthermore, they only consider addition of a new segment,
while we also consider a divided segment, thus the accumu-
lated error in calculating pattern density becomes small.

Finally, repeated patterns are estimated via global opti-
mization framework using Dynamic Programming (DP) as
explained in Section V.

IV. PARTLY LOCALITY SENSITIVE HASHING

Partly Locality Sensitive Hashing (PLSH) is an extension
to Locality Sensitive Hashing (LSH) scheme [14] which is
an approximate nearest neighbor search algorithm.

A. Locality Sensitive Hashing

In LSH framework, L hash functions ¢;(p) (1 <[ < L)
that calculate K dimensional hash values are defined as

gi(p) =< hin(p), hiz(p), - - -, i (p) > (2)
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where p is a d dimensional input value.

h(p) can be any hash function h : R? — U that preserves
locality of input values, i.e. the probability of collision of two
closer input values in a hash bucket is high. In a projection-
based LSH, the following function can be used:

h(p) = [(a-p+b)/w] 3)

where a,b are randomly chosen to satisfy @ € R, ||a|| =
1,0 < b < w for each hash function h(p). w controls the
size of a hash bucket.

Given an input query p, L hash buckets are determined
by ¢i(p). Then, the data points stored in these buckets are
examined whether they are sufficiently close to the query.
LSH solves an approximate nearest neighbor search problem
in O(N'/®) where a(> 1) is an approximation factor
determined by the parameters of LSH.

B. Partly Locality Sensitive Hashing

In PLSH framework, L hash functions g;(p) (1 < I <
L) that calculate K dimensional hash values are similarly
defined by combining locality sensitive hash functions and
locality insensitive hash functions as

a(p) =< hs;1(p),....hsi k. (P), hiy1(P), ..., hii Kk, (P) >
“)
where hs(p) is a locality sensitive hash function and hi(p)
is a locality insensitive hash function.
hs(p), or hi(p), can be any hash function h : R? — U that
preserves, or does not preserve, locality of input values. In
the projection-based scheme, these functions can be defined
as

hs(p) =
hi(p) =

where hs(p) is exactly the same as in Eq.(3), while hi(p)
calculates discretized residual. a,b are randomly chosen to
satisfy @ € R?, ||a|| = 1,0 < b < w for each hash function.
Given an input query p, L hash buckets are determined
from g;(p). Then, the data points stored in these buckets are
examined as in the case of LSH.
Fig. 3 shows how PLSH works.

(@ p+b)/ws], 5
|(a-p+0b)] mod w;

C. Sparse sampling using PLSH

To sample data points from the entire sphere centered at
o(t), the width of a hash bucket is fixed to R. If we use
LSH to sample data points as in [12], it takes time to sample
sufficient number of data points when [V increases because
the number of data points in a hash bucket also increases.

PLSH is effective in this case. We represent each data
point by d+ 1 dimensional vector (p1, .. .,pq4,t)T where the
first d elements represent a data point and the last 1 element
represents the time frame.

To design ¢;(p), we choose K locality sensitive hash
functions hs; ,(p) where the last value of a is always 0
and wg is R. We also choose one locality insensitive hash

projection vector Locality sensitive hash function

hs, (P) ToeT"o[ T ]

Locality insensitive hash function

a, hi(p)[c ]

4
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Fig. 4. Finding consistent repeated patterns.

function hi;(p) where the first d values of a is always 0.
Because time frame is a discretized value, we design a and
w; in hi;(p) so that the width of a hash bucket is exactly
1 time frame and consecutive data points never collide in a
same hash bucket.

In so doing, nearby data points along time axis accesses
independent hash spaces in which no data point is shared
when calculating pattern density. Thus, the computational
time to examine the data points in a hash bucket decreases
because the number of data points in a hash bucket decreases
while the possibility of detecting a new data point, or a
dividing data point, is the same as that of LSH.

V. DETECTION OF REPEATED PATTERNS
A. Target problem

In this study, interrelated multiple continuous time series
data is dealt with. Fig. 4 shows an example of the problem.
The input is trajectories of multiple objects, 3 in this case,
and the algorithm is required to output the patterns that
appear many times in the input trajectories. If the multiple
trajectories are independent of each other, then the algorithm
has only to be applied to each trajectory separately. However,
if the trajectories are interrelated with each other, the algo-
rithm has to find the consistent repeated patterns among the
trajectories.

This is the case when repeated interactions between ob-
jects are of interest. In Fig. 4, there are 3 possible interactions
between: (A) Obj.1 and Obj.2, (B) Obj.1 and Obj.3, (C)
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Fig. 5. Estimation of data labels via dynamic programming.

Obj.2 and Ob;.3. If two of them are detected at the same
time, this means a conflicting situation.

In the proposed method, we assume that there occurs a
single significant interaction at most at a certain moment.
This assumption is not necessarily true when there are 4 or
more objects, or a motion is composed of more than two
objects, but it will be satisfied in most cases.

Then, the problem is formulated as a combinatorial opti-
mization problem in that a data label = € {A, B, C, Non} is
assigned to each time frame as shown in the bottom of Fig.
4. A, B, C' mean there occurs a repeated interaction between
the respective object pairs, while Non means there is no
repeated pattern at that time.

Please note that this formulation includes the case where
repeated patterns are to be detected from a single time-
series data in that we have only two labels: repeated and
not-repeated.

B. Formulation

The problem is formulated as a combinatorial optimization
problem regarding the data labels X = (z1,---zn), 2+ €
{A,B,---,Non} as shown in Fig. 4. There are M =
m(m — 1)/2 data labels where m is the number of objects
in the scene and o;(t) represents relative position between
i-th object pairs at time t.

Given multiple time-series data O =
(01(1), -+ ,01(N), -+ ,0p(1),--- ,0p(N)), we want to
find X that minimizes the energy function

E(0,X) = E4(0, X) + E,(X). (6)

Note that the formulation is slightly different from our
previous work [13], [1] in that the energy function has a
third term that penalizes small velocity.

E4(0, X) is a term regarding pattern density (Eq.(1)) and
it penalizes data points with small density. It is defined as

DIt (t)

E;(0,X) = Z —log(1 — eXP(_W

t

)

where D,, (t) is the pattern density at time ¢ on the relative
trajectory corresponding to x¢, and < D, (¢) > is the mean
value of D, (t).

E4(X) is a term regarding the prior distribution of X.
It penalizes different consecutive data labels to reject short
patterns. It is defined as

Ey(X) = ZT(mt # i) - C’smooth
t

where Cgpooth is @ constant and T'(s) = 1iff s =
true, otherwise 7'(s) = 0.

Because all the terms in Eq.(6) satisfies the first order
Markov property, the energy minimization problem can be
analytically solved by Dynamic Programming as shown in

Fig. 5.

C. Clustering of patterns

An agglomerative clustering technique is applied to the
detected patterns of the same label to divide them into
different types of patterns. In this study, for each pair of
detected patterns, we calculate the ratio of the number of
correspondences whose distance is below the radius R of the
hyper sphere. If the ratio is above the threshold C\\1¢ya1- the
pair of patterns are regarded as to belong to the same type
of pattern.

In order to calculate the ratio efficiently, we use the
middle point ¢; of each segment in the linked list as the
correspondence to time ¢ and merge two patterns together if
Eq.(7) is satisfied. If no segment corresponding to the current
pattern is found at time ¢, the numerator of Eq.(7) becomes
0 at this particular time.

Ztg 1— t—ts  ti—ts;
t=t, fo—tst1  toj—tsj+1

te —ts+1

2 Cmutual (7

where t,,%. and t,;,t.; are the start and the end time of
two patterns. The absolute difference between the normalized
time ¢ and ¢; is used to realize nonlinear elastic matching.

D. Computational complexity

It requires O(N'*1/®) for building PLSH tables and
calculating pattern density for all the time frames, and
O(M?N) for DP. Assuming M << N, the total average
computational time is O(N'*1/@),

VI. EXPERIMENTAL RESULTS
A. Experimental setup

4 different manipulation tasks were performed by a subject
and were used to evaluate the proposed method. There
were 4 objects in the scene and an electromagnetic motion
tracking system (Polhemus FASTRAK) was used to observe
the trajectory of each object at 30Hz during demonstrations.

As shown in Fig. 6, 6 actions are defined. A subject
was instructed to perform a task following a scenario made
by combining 6 actions. To emulate the change in the
environment during a long-term observation, the subject was
instructed to relocate the objects on the table several times
so that the relative relationship between stationary objects
was changed.
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TABLE I
EVALUATION OF DATASET 1 [896 FRAMES].

Action Al False False Precision Recall
Presented # 4 positive negative ratio ratio
kD-tree 4.00 0.00 0.00 1.00 1.00
LSH 3.60 1.00 0.40 0.78 0.90
PLSH 3.90 0.00 0.10 1.00 0.98
TABLE II
EVALUATION OF DATASET 2 [1428 FRAMES].
Action Al A2 False False Precision Recall
Presented # 3 3 Positive Negative ratio ratio
kD-tree 3.00 3.00 0.00 0.00 1.00 1.00
LSH 3.00 1.80 0.30 1.20 0.94 0.80
PLSH 3.00 3.00 0.00 0.00 1.00 1.00
TABLE III
EVALUATION OF DATASET 3 [3737 FRAMES].
Action Al Bl Cl1 False False Precision Recall
Presented # 5 7 6 Positive Negative ratio ratio
kD-tree 5.00 7.00 6.00 0.00 1.00 1.00 0.95
LSH 4.70 5.60 5.50 0.00 3.20 1.00 0.83
PLSH 5.00 7.00 6.00 0.00 1.00 1.00 0.95
TABLE IV
EVALUATION OF DATASET 4 [5177 FRAMES].
Action Bl Cl C2 D1 False False Precision Recall
Presented # 7 5 10 10 Positive Negative ratio ratio
kD-tree 7.00 3.00 6.00 0.00 0.00 16.00 1.00 0.50
LSH 6.40 3.60 3.60 0.00 0.60 19.00 0.96 0.41
PLSH 7.00 3.00 5.30 0.00 0.00 16.70 1.00 0.48
Al A2 D1 by LSH and PLSH depends on the randomly determined

Al:Pour fromacontainer to a cup from the left
A2:Pour from a container to a cup from the right
B1:Pourfromateapot toacup

C1: Mix inside a cup with a spoon

C2: Put into a cup with a spoon

D1:Putfrom a container with a spoon

Fig. 6. 6 manipulation actions.

B. Evaluation

1) Different tasks: Because calculation of pattern density
requires the highest computational complexity, 3 different
methods of calculating pattern density, including exact search
method by kD-tree, approximate search method by LSH
and approximate search method by PLSH, were evaluated
in terms of accuracy in detecting frequent patterns as well
as in terms of computational time. Please note that the exact
search method by kD-tree should give the best result in terms
of accuracy. While the accuracy of the approximate search

parameters of the hash functions, thus each experiment was
evaluated 10 times and the average is shown.

The following parameters are used in all the experiments.
The number of hash functions L = 8 and the number of
locality sensitive hash functions K, = 3. ws = 0.25 which
is equal to the radius R of the hyper sphere. w; was chosen
randomly from 50 to 100. We terminate the sampling process
after Coqrcp data points are sampled in LSH and PLSH. As
suggested in [14], Cgeqpcy = 3L for both LSH and PLSH.

TABLE [, II, III, IV show the results of detecting repeated
patterns using 3 different methods. All the experiments were
performed on a Xeon 3.0GHz PC with 2G memory.

As an error measure, Precision and Recall ratio are calcu-
lated from True Positive (TP), False Positive (FP) and False
Negative (FN) as:

P TP
TP + FP’ TP +FN’

The precision and recall ratio of the proposed method was
almost identical to the ones of kD-tree, while that of LSH is
much worse.

The reason why action D1 was never detected in TABLE
IV was that C2 always followed just after D1 and these two

consecutive actions were detected as a single action which
were labelled as C2.

Precision = Recall =
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2) Different amount of data: In the second experiment.
the 3 methods were evaluated against different amount of
data. 10 datasets of different length were generated by simply
concatenating the dataset in TABLE IV with Gaussian noise
added.

Fig. 7 shows the Recall ratio obtained from the different
methods. As the amount of data increases, recall ratio
decreases. This is because the number of data points in a
hash bucket increases as well. The result of kD-tree is the
best. PLSH is far better than LSH with the same parameters.
We also tested the case where Cyeqrpy = 10L for LSH to
increase the number of buckets and to decrease the number
of data points in a bucket, but PLSH is still better.

If we increase K, the number of locality sensitive hash
functions, recall ratio is dramatically improved with a slight
increase of computational time. If we set Ky, = 4, the
computational time is increased by 10 %, while recall ratio
of the 10-th dataset becomes 0.43 as shown in Fig. 7.

Precision ratio achieves almost always 1.00 for all the
methods, thus we omitted the evaluation of precision ratio.

Fig. 8 shows the computational time obtained from the dif-
ferent methods. The time of kD-tree increases quadratically,
while the time of LSH and PLSH increases almost linearly.

This is the strong advantage of the proposed method when
dealing with a huge amount of observations.

VII. CONCLUSIONS

This paper presents a method that detects consistent re-
peated patterns from multiple observations in O(N'*1/«)
time where N is the total amount of data.

Partly Locality Sensitive Hashing (PLSH) is proposed
to find candidate repeated patterns efficiently by sparsely
sampling nearby patterns in subquadratic computational time.

The proposed method was evaluated by detecting repeated
interactions between objects in everyday manipulation tasks.
The proposed method outperformed the method based on kD-
tree and LSH in terms of accuracy or computational time.
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