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Abstract— In this paper, we propose a method for estimating
meaningful actions from long-term observation of everyday
manipulation tasks without prior knowledge as part of an action
understanding framework for life support robotic systems. The
target task is defined as a sequence of interactions between
objects. An interaction that appears many times is assumed
to be meaningful and repetitious relative motion patterns
are detected from trajectories of multiple objects. The main
contribution is that the problem is formulated as a combina-
torial optimization problem with two parameters, target object
labels and correspondences on similar motion patterns, and is
solved using local and global Dynamic Programming (DP) in
polynomial time O(N log N), where N is a total amount of
data. The proposed method is evaluated against manipulation
tasks using everyday objects such as a cup and a tea-pot.

I. INTRODUCTION

The applicable areas of robotics technology have been

rapidly expanding and “supporting our life in everyday

environment” is becoming one of the key applications.

To determine what robotic behavior is appropriate in a

certain situation, the system should understand what a human

is doing at the moment. A common approach to understand

human behavior is to design a set of necessary and sufficient

task-dependent recognizers that detect significant actions

and capture the necessary parameters to describe the tasks

[1], [2], [3], [4], [5]. Various tasks are tackled in this

approach: including assembly planning [1], [2], soft object

manipulation [3], whole body motion generation [4], [5],

etc. However, unlike in the well-organized environment such

as a factory, the variety of human behavior in everyday

environment is infinite, thus it is not practical to prepare

recognizers to cover all the possible daily activities.

For this reason, the desirable system should have a mech-

anism to obtain and accumulate new knowledge, i.e. new

causal relationship, incrementally from observation. As a

bootstrap process to realize this mechanism, we are interested

in finding structured information in observations that can be

extracted without prior knowledge about the presented task.

The basic idea is if a particular motion pattern appears many

times in observations, this pattern must be meaningful to the

demonstrator or to the task. When the system detects some

repetitious motion patterns such as preparation for breakfast

or reading a news paper while observing daily activities for a

long period time, e.g., several days, these patterns are marked

as meaningful actions and the causal relationship between
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Fig. 1. Target Problem

meaningful actions can be used to predict the next action of

a user that can be supported in some ways by the robotic

system, e.g., bringing a news paper.

In the scope of this paper, we assume that daily activities

are composed of a sequence of interactions between two

manipulated objects, and we propose a method for detecting

repetitious interactions observed from motion trajectories of

multiple environmental objects.

The problem is formulated as a combinatorial optimization

problem with two parameters, target object labels and cor-

respondences on similar motions, and is solved using local

and global Dynamic Programming (DP) in polynomial time.

The contribution of the proposed method is two fold. The

first contribution is to find repetitious motion patterns in

temporal data streams without a reference pattern in polyno-

mial time O(N log N), where N is a total amount of data,

while most of the previous methods require O(N2) time or

a reference pattern which is not practical in our applications

where we have to deal with long-term observation without

prior knowledge about the task. The second contribution

is that it can estimate which two objects among many

candidates constitute each meaningful interaction, while most

of the previous methods assume a single object or a single

trajectory.

This paper is organized as follows. In Section II, the target

problem is explained and the related research as well as the

overview of the proposed algorithm is presented. In Section

III, the details of the proposed method is described. The

experimental results and evaluation are shown in Section IV

and we conclude the paper in Section V.

II. LEARNING MEANINGFUL INTERACTIONS

In this section, the problem of finding meaningful inter-

actions between two objects from trajectories of multiple

objects is examined. Here, we assume that an interaction that
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appears many times in observations is meaningful, thus the

problem becomes to find repetitious relative motion patterns

between two particular objects.

Fig.1 shows an example of the target problem. There are

three objects in the scene and the input to the algorithm is the

three trajectories corresponding to each object. In this case,

the desired output would be the two types of interactions:

(1) “Pour from A to B” which appears three times and

(2) “Pour from C to B” which appears two times. In both

interactions, a set of segments are detected in which all the

relative trajectories are quite similar to each other.

A. Related Research

There are roughly two approaches to detect repetitious mo-

tion patterns. One is a recognition approach where repetitious

motion patterns are spotted by a set of recognizers. The other

is a pattern matching approach where Dynamic Programming

is typically used to detect similar patterns.

1) Recognition Approach: Mori et al. proposed a hierar-

chical recognition framework where multiple HMM-based

recognizers for different action types and different abstrac-

tion levels run in parallel and inconsistencies in the result

are resolved by the relationship in the action hierarchy[6].

However, the labelled training data must be provided for the

recognizers and it cannot deal with new actions.

Zhao et al. proposed a structured representation of the

motion primitives that satisfies MDL and recognized ballet

sequence[7]. However, the typical motion patterns encoded in

each recognizer are quite short and it is difficult to spot a long

and complex interactions between objects in this approach.

2) Pattern Matching Approach: Bobic et al. represented a

set of training trajectories of gestures as a sequence of states

and recognized an input gesture using Dynamic Program-

ming under a state transition framework[8]. However, this

method requires manually segmented and labelled training

data for each gesture.

To relax the requirement for pre-segmentation, Ogawara

et al. proposed a method for detecting a set of repetitious

motion patterns from multiple observations of the same task

using multi dimensional Dynamic Programming[9]. How-

ever, multiple demonstrations should be provided in that the

same types of motion patterns appears in the same order.

To overcome this problem, Uchida et al. proposed a

method for detecting a set of repetitious motion patterns

from a single observation using logical DP matching[10].

However, the computational complexity is O(N2) and it

cannot deal with multiple objects.

Ogawara proposed a method for detecting a set of repe-

titious motion patterns from a single observation[11]. It can

deal with multiple objects, however it solves a combinatorial

optimization problem by a stochastic method, Markov-Chain

Monte Calro (MCMC), and the computational efficiency be-

comes dramatically degraded as the amount of data increases.

B. Proposed Method Overview

In this paper, a deterministic method for detecting repeti-

tious motion patterns from a single observation is proposed.

1Tt =

(1) Evalua�on is high (2) Evalua�on is small (3) Evalua�on is small

Rela�ve trajectory between Object A and Object B

2Tt = 3Tt =

)(tO )(tO )(tO

)( 1TO

Similar Mo�on 

candidate
Mo�on of Interest

Fig. 2. Evaluation of Repetitious Motion Pattern. There is a single
trajectory, but some parts are omitted to better visualize it.

Fig.2 shows the 2D slice of a relative trajectory O(t)
between two objects. If a motion pattern of interest at

around time t has the similar motion patterns at other time

frames on the same trajectory, this pattern can be considered

as meaningful since this particular pattern appear multiple

times. Because we take a relative trajectory between objects

as input, the similarity can be evaluated by the degree of

overlap between their trajectories in the eucledian space.

Fig.2 shows the three typical cases. In case (1), the motion

pattern of interest at around t = T1 has multiple similar

motion pattern candidates in the neighborhood, thus the

evaluation that the interaction between object A and B at

around t is meaningful becomes high. In case (2), there

is no similar motion pattern candidates at around t = T2,

thus the evaluation becomes small. In case (3), there are

multiple motion pattern candidates in the neighborhood at

around t = T3, however the shape of them are completely

different, thus the evaluation also becomes small.

The proposed algorithm evaluates the above mentioned

criteria for each data point along the entire relative trajectory

and integrate the evaluation in a globally consistent way.

The computational complexity of the proposed method

is O(N log N), where N is a total amount of data. This

is achieved by efficiently constraining the search space for

finding the similar motion patterns within the neighborhood

of each data point using kd-tree search algorithm.

Also, the proposed method can estimate which two objects

among multiple object candidates constitute a repetitious mo-

tion pattern of interest. This is achieved by formulating the

problem as a label assignment problem. This combinatorial

optimization problem can be solved by Dynamic Program-

ming which naturally solves the determination problem of

the target object in the scene.

III. DETECTION OF REPETITIOUS MOTION PATTERNS

A. Problem Formulation

The problem is formulated as a combinatorial optimization

problem regarding to two parameters X,Y . Given observa-

tion O, these two parameters are solved for each object Objm
in the scene using Maximum-A-Posteriori(MAP) estimate

of the probability function P (X,Y |O). Fig.3 shows the

overview of the formulation.

The target object label X = {
⋃

xt|xt ∈ {A,B, · · · , N}}
indicates the target object in the scene with which Objm
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interacts at time t. If Objm does not interact with any object

at time t, label N is assigned to xt.

The correspondence parameter Y = {
⋃

yk,t|sk,t ≤ yk,t ≤
ek,t}} indicates the time frame whose data point O(yk,t) lies

on a similar motion pattern and corresponds to the data point

O(t) at time t. Fig.3 shows an typical example in the middle

of estimation process where target label B is assigned to xt

and the relative trajectory between object Objm = A and B

is of interest at around time t. The range of yk,t is limited

within rangek,t(sk,t ≤ yk,t ≤ ek,t) which is calculated

beforehand as described in Section III-B.

The MAP estimation of the probability function

P (X,Y |O) is re-written as in eq.(1) using Bayes’s theorem.

argmax
X,Y

P (X,Y |O) ∝ argmax
X,Y

P (O|X,Y )P (Y |X)P (X)

(1)

P (O|X,Y ) is an observation likelihood term given X

and Y . P (Y |X) is a frequency term which favors large

number of similar motion patterns. P (X) is a prior term, or

a smoothness term, which penalizes the difference between

consecutive target labels.

To realize MAP estimation, we employ an iterative frame-

work as follows.

1) Initialization

2) Estimation of Y using local DP matching (X is fixed)

3) Estimation of X using global DP (Y is fixed)

4) Go to 2) until convergence

In the remainder of this section, the above mentioned

procedure is explained in details.

B. Initialization

As mentioned in the previous section, rangek,t (the range

of yk,t) is calculated as follows.

First of all, Kd-tree, a binary tree, is constructed on

observed 6 D.O.F. relative trajectory space: 3 D.O.F for

relative position and 3 D.O.F. for relative orientation. The

entire observation data is recursively divided by a hyper-

plane perpendicular to the axis along which the variance of

the remaining data points becomes maximum. One Kd-tree

t
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Fig. 4. Estimation of Correspondences Y using Local DP Matching

is built for each relative trajectory. The computational cost

for Kd-tree construction is O(N log N).
To determine rangek,t, Kd-tree is searched and the set of

data points Ct whose distance to O(t) is less than r is found

as in eq.(2).

Ct = {
⋃

O(j)| ‖ O(j) − O(t) ‖< r, 0 ≤ j ≤ T} (2)

Then, the data points in Ct are sorted along time domain

and the consecutive data points are grouped so as to define

the rangek,t, from sk,t to ek,t, of the correspondent point to

O(t). As for the case in Fig.3, two range are found.

This process is applied to all the data points O(t){1 ≤
t ≤ T} and rangek,t is determined for all the time frame t.

The total computational cost is O(N log N). This cost is the

bottle neck of the proposed algorithm.

Lastly, X is initialized so that no-interaction label N is

assigned to all xt.

C. Estimation of Y using Local DP Matching

1) Estimation of Initial Y using Local DP Matching:

Given target object label X , X can be divided into segments

where all xt in each segment have the same label. Fig.4

shows an example where label B happens to be assigned to

the segment at around t during the estimation process.

Here, we try to find similar motion patterns by estimating

the correspondences Y on them using local DP matching.

As shown in Fig.4, we already have rangek,t on this

segment. The range of the correspondent time frame yk,t

is limited within rangek,t. This means, the similar motion

patterns must go through each of rangek,t as shown in red

lines in the figure.

Under this constraints, the optimal paths are calculated

using Dynamic Programming. Here, we define the allowable

step size in DP ranges from 0 to 2, so that li takes value

between 0 and 2L. Eq.(3) shows the recurrence equation of

DP.

g(t, t′) = s(t, t′) + min





g(t − 1, t′ − 2)
g(t − 1, t′ − 1)

g(t − 1, t′)



 (3)
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where s(t, t′) means the similarity in pose, i.e. 3 D.O.F

position and 3 D.O.F. orientation, at t and at t′ on the

relative trajectory between Objm and Object B. g(t, t′)
means accumulated cost along the path.

For each rangek,t, the longest and minimum cost path is

calculated using Dynamic Programming where the cost is

accumulated from the both terminal to rangek,t. The total

number of calculated path is equal to the number of rangek,t

included in that segment. However, most of the paths are

identical to each other in general and four distinct paths are

finally found in the case of Fig.4.

Then, two parameters are calculated for each detected

pathi. One is the ratio between the length of the segment

at time t and the length of the corresponding similar motion

pattern as shown in Fig.4 and is defined as in eq.(4). The

other is the similarity between the segment and the similar

motion pattern and is defined as a function of the average

cost of DP matching dp costi along pathi and is defined as

in eq.(5).

li =











di

Li

(di ≤ Li)

Li

di

(Li ≤ di)
(4)

simt,i = exp(−β · dp costi) (5)

2) Topological Reduction: Most of the detected paths in

the previous section are redundant as shown in Fig.5. There

are six paths found in “before” region that is the direct result

of the local DP matching. Also, we can see that there are

two holes in the region. This situation typically occurs when

a user presents a similar motion several, in this case three,

times without sufficient intervals.

Among six paths, the 2nd and 5th path are not important

because they are apparently shorter compared with the 4th

or 6th path. And the 3rd and 4th path are redundant and one

of them should be selected.

Thus, we apply the following two operations to the can-

didates.

1) If a path starts or ends at a hole, remove it

2) If two paths can be completely overlap without going

over the holes, remove one with lower evaluation

Then, we can get the non-redundant paths as shown in

“after” region in Fig.5.

3) Definition of Probability Function: Finally, the proba-

bility function P (O|X,Y ), P (Y |X) and P (X) are defined

as in eq.(6), eq.(9) and eq.(11).

P (O|X,Y ) = ΠP (ot|xt)P (O|xt, yt) (6)

P (ot|xt) means a velocity term that penalizes a static

object and is defined as in eq.(7).

P (ot|xt) = 1 − exp(−α · velocityt) (7)

where velocityt is the velocity of Objm at time t.

P (O|xt, yt) means a similarity term that penalizes differ-

ent motion patterns and is defined as in eq.(8).

P (O|xt, yt) =
Σli exp(−β · similarityi)

Σli
(8)

where li and similarityi are defined in the previous section

III-C.1.

P (Y |X) = ΠP (yt|xt) (9)

P (yt|xt) means a frequency term that penalizes if the

number of similar motion patterns is small and is defined

as in eq.(10).

P (yt|xt) = 1 − exp(−γ · Σli) (10)

P (x) = ΠP (xt, xt+1) (11)

P (xt, xt+1) is a smoothing term that penalizes the differ-

ence between consecutive target labels and is defined as in

eq.(12).

P (xt, xt+1) = T (xt 6= xt+1) · K (12)

where K is a constant and T (s) = 1 iff s = true, T (s) =
0 otherwise.

Lastly, the probability function where xt = N is defined

as follows.

P (O|xt = N, yt) =
ΣP (O|xt 6= N, yt)

#P (O|xt 6= N, yt)
· NL (13)

P (yt|xt = N) =
ΣP (yt|xt 6= N)

#P (yt|xt 6= N)
· NL (14)

where NL is noise level.

D. Estimation of X using Global DP

Target Label X can be solved analytically via global DP

matching.

As shown in Fig.6, a directional graph is constructed.

−logP (O|xt, yt)− logP (yt|xt) is assigned as a node weight

and −logP (xt, xt+1) is assigned as an arc weight. Then, the

minimum cost path is calculated in Dynamic Programming

manner and the result represents the target object label X .

The computational cost of this process is O(NM) where

M is the number of objects in the scene.
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IV. EXPERIMENTAL RESULT

A. Experimental Setup

Four different manipulation tasks were performed by a

subject and were used to evaluate the proposed method.

There were four objects in the scene and an electromagnetic

motion tracking system (Polhemus FASTRAK) was used to

observe the trajectory of each object during demonstrations.

Fig. 7 shows the objects used in this experiment.

As shown in Fig.8, six actions are defined. A subject

was instructed to perform a task along a scenario made

by combining six actions. To emulate the change in the

environment during long-term observation, the subject was

instructed to relocate the objects on the table several times

so that the relative relationship between static objects was

changed.

Fig.9 shows one of the visualized trajectory data set.

B. Evaluation

The proposed method is compared with the method pro-

posed in [11]. In [11], the combinatorial optimization prob-

lem is solved by efficiently sampling the solution space via

Markov Chain Monte Calro (MCMC) algorithm.

TableI, II, III, IV shows the presented scenario and the

result of detecting repetitious motion patterns using two

different methods.

As an error measure, Precision and Recall are calculated

from True Positive (TP), False Positive (FP) and False

Negative (FN) as defined in eq.(15).

I: Pour from A to B

II� move A to B

III� Spoon up with D in A

IV�Put material into B with D

V� Mix inside B with D

VI�Pour from C to B

I II III IV V VI

Fig. 8. Six primitive Actions in the Scenario

Fig. 9. Visualized Input Trajectory in Data-set 4 [16386 frames]

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(15)

C. Discussion

Since the data set used in the experiment were relatively

short, a clear difference was not found between two methods.

However, there was a tendency that the proposed method

results in the lower False Positive rate.

The MCMC method becomes drastically slow if the

amount of data increases. Even if the amount of data is

moderate, it is sometimes difficult to decide when we should

end the algorithm. On the other hand, the proposed method

outputs the result in deterministic way and we do not have

to worry about the termination of the algorithm.

Several constant parameters in the probability function are

defined ad-hoc and they should be adjusted to achieve better

error ratio.

V. CONCLUSION

This paper presents a method for detecting repetitious

relative motion patterns among multiple trajectories in poly-

nomial time.

The problem is formulated as a combinatorial optimization

problem with two parameters and is solved using local
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TABLE I

EVALUATION FOR DATA-SET 1 [1788 FRAMES]

Action III IV V

Number 3 0 0 TP FN FP Precision Recall

MCMC Method [11] 0 0 0 0 9 6 0.0 0.0
Proposed Method 0 0 1 1 8 0 1.00 0.11

TABLE II

EVALUATION FOR DATA-SET 2 [3819 FRAMES]

Action I V VI

Number 6 6 6 TP FN FP Precision Recall

MCMC Method [11] 5 6 6 17 1 8 0.68 0.94
Proposed Method 5 6 4 15 3 0 1.00 0.83

TABLE III

EVALUATION FOR DATA-SET 3 [5176 FRAMES]

Action II III IV V VI

Number 6 6 6 5 7 TP FN FP Precision Recall

MCMC Method [11] 6 0 6 0 7 19 11 7 0.73 0.63
Proposed Method 5 0 2 0 2 9 21 4 0.69 0.3

TABLE IV

EVALUATION FOR DATA-SET 4 [16386 FRAMES]

Action II III IV V VI

Number 16 24 24 12 20 TP FN FP Precision Recall

MCMC Method [11] 2 11 11 0 19 43 53 38 0.53 0.45
Proposed Method 11 12 13 11 20 67 32 10 0.87 0.68

and global Dynamic Programming (DP) in polynomial time

O(N log N), where N is a total amount of data.

The proposed method is not applicable to real-time ap-

plications because Kd-tree must be built on the entire ob-

servation. However, it still offers a powerful tool to off-line

applications since a non-Markovian combinatorial optimiza-

tion problem is solved in polynomial time due to the efficient

computation algorithm.

The notion of meaningfulness is highly context-dependent

and it is not practical to tackle it by the system alone. Future

work should be to bring a user into the action understanding

framework in interactive way, so that the system can naturally

incorporate the knowledge of the users.
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