
Hierarchical Face Cluster Partitioning of Polygonal Surfaces
and High-Speed Rendering

Tokuo Tsuji,1 Hongbin Zha,2 Tsutomu Hasegawa,1 and Ryo Kurazume1

1Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 812-8581 Japan

2Center for Information Science, Peking University, Beijing, 100871, China

SUMMARY

A computer’s rendering capacity cannot handle the
increased amount of data when rendering high-quality,
three-dimensional computer graphic images. This results in
problems such as rendering not being possible depending
on the subject image, or the rendering speed dropping too
far. To resolve these problems, we propose a method for
generating a new hierarchical three-dimensional data struc-
ture based on recursive face cluster partitioning, and a
high-speed rendering data extraction algorithm using that
data structure. In the proposed algorithm, local resolution
control using the approximating polygon of a face cluster,
and precise invisible surface culling using the bounding
volume of the face cluster can be executed in parallel.
High-speed rendering can be performed with little deterio-
ration in quality, even for a large amount of data. The
effectiveness of this algorithm was confirmed with a local
resolution control experiment and a large-scale three-di-
mensional model rendering experiment. © 2007 Wiley Pe-
riodicals, Inc. Syst Comp Jpn, 38(8): 32–43, 2007;
Published online in Wiley InterScience (www.interscience.
wiley.com). DOI 10.1002/scj.20581

Key words: polygon model; hierarchical model-
ing; LOD control; occlusion culling.

1. Introduction

With improvements in the capacities of three-dimen-
sional measuring devices such as range finders, stereo
cameras, and medical imaging devices, three-dimensional
forms of real objects can now be measured at high precision
and high density, and the measurements easily read into
computers. Also, improvements in the capacities of 3D
modelers and computers have made it easy to generate
complex and detailed virtual objects. High-quality, three-
dimensional computer graphic (CG) images can be gener-
ated using these geometrical models.

Higher precision and higher density three-dimen-
sional data have resulted in increasing amounts of data to
be processed. For example, in Stanford University’s Digital
Michelangelo Project [1], 2 billion polygons were collected
from the statue of David. Thus, scans of art objects or
buildings will amount to several gigabytes of data. A com-
puter’s rendering capacity cannot handle this increase in
data, resulting in problems such as rendering becoming
impossible, depending on the image, or excessive drops in
the rendering speed.

However, the amount of data necessary for rendering
a three-dimensional model placed in a given scene changes
depending on the relative positions of the viewpoint and the

© 2007 Wiley Periodicals, Inc.

Systems and Computers in Japan, Vol. 38, No. 8, 2007
Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J88-D-II, No. 7, July 2005, pp. 1205–1215

Contract grant sponsors: 21st Century COE Program “Forming Funda-
mental Social Systems in Systems and Information Science” and support
was received from the Strategic Information and Communications R&D
Promotion Programme, Ministry of Internal Affairs and Communications.

32

model. For example, when the viewpoint is changed and
the three-dimensional model is rendered as shown in Fig.
1, the surface can apparently be expressed with a small
number of polygons and the image can be rendered without
a loss in quality in the case of (c) where the viewpoint is far
from the model. Also, when the viewpoint is close to the
model (a), polygons outside the field of view need not be
rendered. A three-dimensional model comprising a large
amount of data can be rendered at a high speed when only
the minimum amount of data necessary depending on the
viewpoint is rendered.

Level of detail (LOD) control and invisible surface
culling are proposed as methods for selecting the rendering
data according to the viewpoint and rendering large amount
of data efficiently. LOD control accelerates the process by
controlling the LOD of the image and simplifying and
rendering the object [2–10]. On the other hand, invisible
surface culling improves the rendering speed by removing
surfaces not to be rendered [11–17]. However, using either
LOD control or invisible surface culling alone will some-
times not result in a sufficient and stable rendering speed in
an environment with a large number of models comprising
large amounts of data. Consequently, a process which com-
bines LOD control and invisible surface culling is neces-
sary. In fact, controlling the level of detail according to the
resolution of the image and deleting invisible surfaces will
reduce dependence on the complexity of the rendered im-
age and rendering can be performed at high speeds even for
large amounts of data. Ideally, the maximum amount of
processing will depend only on the number of pixels.

Before now, there have been proposals for algorithms
combining LOD control and invisible surface culling, using
a hierarchical data structure expressing three-dimensional
models at different resolutions and describing the relation-
ships thereof with a tree structure [18–24]. However, these
methods have problems such as perceptible errors (arti-
facts) appearing in the images and reduced rendering speed
when the viewpoint changes greatly. These are a result of
the conventional methods not consistently performing
processing at each level of the hierarchy for error-free
invisible surface culling, and processing for control of
levels of detail in arbitrary sections.

A tree structure with vertices as nodes is used for
control of levels of detail in arbitrary sections. The vertex
nodes are selected according to the desired level of detail
and the surface to be rendered is reconstituted from those
vertices. Meanwhile, in error-free invisible surface culling,
the model is recursively partitioned and the hierarchy of
bounding volumes, enclosing progressively smaller regions
as one moves toward the lower levels, is generated in
advance. In rendering, processing is accelerated by exam-
ining bounding volumes in order from the upper nodes of
the hierarchy and removing faces included in bounding
volumes determined to be invisible. However, when this
type of invisible surface removal is performed using a tree
structure of vertices, the bounding volumes of each node
are highly overlapped because faces traverse the tree struc-
ture, and the efficiency drops substantially.

In this study, we propose an algorithm for generating
a new hierarchical three-dimensional data structure based
on recursive face cluster partitioning, and a high-speed
rendering data extraction algorithm using that data struc-
ture. In preprocessing, the operation of recursively parti-
tioning face clusters, the set of connected faces, from the
original model is repeated and a binary tree with face
clusters as nodes is generated. At each node in the hierarchy,
the approximating polygon of the face cluster and the
bounding volume are computed. During rendering, the
approximating polygon is selected according to the desired
LOD, adjoining polygons are connected, and a connected
mesh is generated. Even when connecting approximating
polygons, the determination of invisibility can be made
without error at all the nodes in the tree structure because
those approximating polygons are included in the bounding
volume of a cluster. With this algorithm, both error-free
invisible surface culling and LOD control of arbitrary por-
tions of a model, which are not implemented with conven-
tional methods, can be performed at all levels of the
hierarchy, and rendering without artifacts and without de-
lay, even in the case of large shifts of viewpoint, is possible.

This paper is organized as follows. In Section 2,
relevant algorithms for LOD control and invisible surface
culling are introduced and issues therewith are clarified. An
overall picture of the proposed algorithm is discussed in
Section 3. Next, the proposed hierarchical data structure
based on recursive face cluster partitioning is described in
detail in Section 4 and an effective method for selecting
rendering data using the proposed hierarchical data struc-
ture is discussed in Section 5. In Section 6 are disclosed the
results of the local LOD experiment and the large-scale
three-dimensional model rendering experiment. Conclu-
sions are discussed in Section 7. Fig. 1. A model displayed in different viewpoints.

33

2. Relevant Algorithms

2.1. LOD control

LOD control is performed at a high speed through
controlling the LOD of the mesh and simplifying and
rendering objects which are distant from the viewpoint.
Two types of LOD control are discrete LOD control [10]
and continuous LOD control [2–9]. In discrete LOD con-
trol, several preparatory steps are taken in advance for
objects with different levels of detail for the entire model
and the display switches among the models during render-
ing. In continuous LOD control, a tree structure of vertices
is prepared and the vertices are dynamically selected during
rendering.

Discrete LOD control is easy to set up, but has the
problem that images change greatly when the level of detail
is switched and artifacts will occur. Also, rendering effi-
ciency will sometimes drop because it is not possible to
establish LOD with fine differences within the model.

The progressive mesh proposed by Hoppe [2] is a
data structure for implementing continuous LOD control.
Therein, a single edge within the model is selected accord-
ing to appropriate metrics, the endpoints of that edge are
brought to a single point, and the edge is removed; this
operation is repeated until a predetermined simplification
metric is satisfied. At the same time, a tree structure is
prepared wherein child nodes are the endpoints of removed
edges and parent nodes are the vertices newly generated
upon edge culling. The LOD of the model can be easily
changed by controlling the hierarchy of data accessed dur-
ing rendering.

2.2. Invisible surface culling

Invisible surface culling accelerates rendering by re-
moving surfaces outside the field of view which are not
rendered. Invisible surface culling encompasses an ap-
proximate algorithm for reducing the resolution of regions
which are presumed to be unseen, and a conservative algo-
rithm for removing regions which are certain to be unseen.

A problem with the approximate algorithm is that
artifacts occur because it is not an exact calculation.

Meanwhile, the conservative invisible surface culling
algorithm does not have artifacts. The calculations for
conservative invisible surface culling require that a hierar-
chy of bounding volumes be prepared in advance, from a
volume containing the entire model down to progressively
smaller regions. At this time, the bounding volumes are
found as simple forms with convexities such as spheres or
cubes. Expressing the bounding volumes with smaller ele-
ments can result in faster calculations. Moreover, the cal-
culation efficiency improves as the bounding volumes are

brought into close contact with the model and superfluous
space is not included.

2.3. Integrated algorithm for LOD control
and invisible surface culling

An integrated algorithm using discrete LOD control
[19–21] and an integrated algorithm using approximate
invisible surface culling [22, 23] have problems with arti-
facts. Continuous LOD control and the conservative invis-
ible surface culling algorithms must be integrated in order
to suppress the generation of artifacts.

Yoon and colleagues proposed an algorithm which
integrates continuous LOD control and conservative invis-
ible surface culling [24]. However, the determination of
invisibility and LOD control are performed in two stages,
reducing efficiency. In this algorithm, preprocessing is per-
formed so that a hierarchy with partial trees as nodes is
prepared by partitioning the progressive mesh in space and
bounding volumes are found for each partial tree. During
rendering, the partial tree nodes to be rendered are selected
according to the determination of invisibility using the
bounding volumes. Thereafter, LOD control is performed
within the partial trees. A consequent problem is that the
determination of invisibility is not performed within a
partial tree. Furthermore, a vertex comprising one face is
sometimes associated with a different partial tree. As such
surfaces are not included in the bounding volume, the
determination of invisibility must be performed for these
surfaces individually. In order to accelerate rendering, simi-
larities between frames of rendering data are used. Data
rendered in the previous frame are used in the selection of
rendering data for a given frame. Consequently, big shifts
in the viewpoint result in a drop in rendering speed because
of reduced similarity between frames.

3. Overview of Proposed Algorithm

In this paper, data expressed with a connected mesh
is treated as the input data. An operation is performed
wherein all faces of the input data are treated as one cluster
which is repeatedly and recursively divided in half. The
hierarchical data structure necessary to accelerate rendering
is generated in the process which repeats the cluster parti-
tioning operation.

The following steps are performed in the partition
operation.

(1) Using multivariate analysis, data distribution
within the cluster is analyzed and the center of gravity and
principal component vector are found.

(2) The cluster is partitioned at the plane passing
through the cluster center of gravity and perpendicular to

34

the principal component vector calculated with multivariate
analysis, and two new clusters are generated.

(3) A tree structure is generated in which the parent
is the partition cluster and the children are the clusters
generated by partitioning.

(4) The clusters generated by partitioning are ap-
proximated with polygons.

With the repetition of this operation, a binary tree
structure is generated wherein the root node is the cluster
including all the faces, and the leaf nodes are clusters
including one original face. Each node in the generated
binary tree hierarchy corresponds to an approximating
polygon. In fact, the resulting data structure is also a hier-
archy of approximating polygons.

During rendering, a connected approximating mesh
is generated by selecting approximating polygons satisfy-
ing the given level of detail from the upper level nodes in
the tree structure, and connecting adjacent approximating
polygons together.

In the hierarchy of approximating polygons, the con-
servative determination of invisibility can be performed at
all nodes. Even when deformed by being connected with
adjacent polygons, an approximating polygon is consti-
tuted with vertices on the cluster boundary of its node.
Consequently, polygons are not generated by combining
vertices within a cluster associated with different clusters.
Also, each polygon is constituted from vertices of each face
cluster and is therefore included in the bounding volume of
the face cluster. Furthermore, the face cluster of each node
is a partial aggregation of the face cluster of the node above
it. Each polygon is therefore enclosed within the bounding
volume of the cluster of the node above. Consequently,
conservative invisible surface culling, using the bounding
volume of the face cluster of the node above, can be
performed in parallel with continuous LOD control.

The proposed algorithm has the following three char-
acteristics.

(1) In face clustering, forms closer to the surface than
in the conventional algorithm generate a simple face cluster.
Conventional recursive partitioning of data points [10] does
not necessarily result in the partitioned data point distribu-
tion becoming flat. Also, with the face cluster merging
method [25], cluster forms in the node above easily become
complex.

(2) Approximating meshes with arbitrary levels of
detail are generated in real time from the face cluster
hierarchy. The face cluster hierarchy structure itself has
already been proposed with the object being to accelerate
radiosity calculations [25], but has never been used as a
method for generating an approximating mesh. Conven-
tional methods [10, 26] for generating an approximating
mesh from a face cluster or vertex cluster do not generate

tree structures and do not implement continuous LOD
control in real time.

(3) A polygon enclosing a cluster in an image is
generated by expanding the approximating polygon. The
bounding polygon can be attached to and enclose a cluster
with a smaller number of elements than a conventional
oriented bounding box (OBB) or the like.

4. Hierarchical Data Structure Based on
Recursive Face Cluster Partitioning

4.1. Multivariate analysis

Using multivariate analysis [27], the face distribution
and normal distribution constituting a face cluster are ana-
lyzed and used in cluster partition orientation and model
error calculation. Before now, principal component analy-
sis was used to generate hierarchical models. For example,
a method was proposed for finding the main axis from an
aggregation of data points with principal component analy-
sis, and then partitioning the aggregation at a plane passing
through the center of the data points and perpendicular to
the main axis [10]. In face cluster merging, the quadric error
(least squares error) derived with principal component
analysis is used for selecting the merged cluster [25]. Also,
methods for generating the progressive mesh include a
method for using the quadric error to select the edges to be
collapsed [7, 8].

In this research, the face distribution was analyzed
with principal component analysis and used for cluster
partitioning and modeling error evaluation. In the modeling
error calculation, an error evaluation independent of data
point density is implemented by expanding the quadric
error [25] calculated for conventional discrete point data to
calculations for continuous surfaces. Partitioning using
principal component analysis has been used before, but the
normal distribution of the faces was not considered and the
partitioning results sometimes did not become flat. Thus,
this is a proposal for a new method for analyzing the
distribution of faces in normal space using principal corre-
lation analysis. This method is used in cluster partitioning
along with principal component analysis.

Principal component analysis (PCA)
When data points {v1, . . . , vN} are present, the

variance-covariance matrix of the points is expressed as
follows:

(2)

(1)

35

Here, v
_
 = (Σi=1

k vi) / k.
This formula is expanded to points on a surface. The

variance-covariance matrix Zrr from a point r on a face
cluster region R is expressed as follows:

Here, A is the total surface area of the mesh, dr is the surface
element, and r

_
 = 1/A ∫R rdr.

Because all polygon surfaces can be partitioned into
triangular patches, Zrr can be found with the base unit being
triangular patches. When the triangular patch fi has three
vertices {vi1, vi2, vi3}, the points on each triangular patch
can be expressed as follows:

Here, s and t are in the range of D = {(s, t) : 0 < s, t, s + t < 1}.
Also, riri

T is the integral over the triangular patch and is
expressed as follows:

Here, Ai is the area of the triangular patch. When ri is
integrated over the triangular patch, the following results:

Consequently, the variance-covariance matrix Zrr of points
on the triangular patch {f1, . . . , fM} is expressed as

mjk =

1 / 6 (j = k)
1 / 12 (j ≠ k)

, A = ∑ Ai
i=1

M

The eigenvector corresponding to the maximum eigenvalue
of Zrr becomes the principal component vector.

The modeling error is calculated for each cluster with
multivariate analysis. The modeling error ε is defined as
follows:

Here, pmin is the eigenvector corresponding to the smallest
eigenvalue of Zrr. The modeling error is the mean square of
the distance from the approximating surface of a point on
the cluster. The formula is an expansion of the quadric error
from the discrete data points, which has already been pro-
posed, to a continuous surface. For smaller values of the
modeling error ε, the cluster is closer to a flat surface; and
the error is smaller when approximated with a polygon. The
modeling error is calculated when the hierarchical model is
prepared and is preserved in the tree structure in advance.

Canonical correlation analysis (CCA)

Let n be a normal vector on the point r, and ni be a
normal vector of a surface fi, then the normal variance-co-
variance matrix Znn is found as follows:

Here, n
_
 = (∑Ai=1

M Ain
_

i) / A. Also, the correlation matrix nor-
mal to the position Zrn is calculated as follows:

The canonical correlation matrix Brn facing the position is
expressed as

(5)

(6)

(7)

(8)

(4)

(3)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

36

The principal component vector of Brn becomes the direc-
tion with the highest normal dispersion on the three-dimen-
sional space.

4.2. Cluster partitioning

Cluster partitioning is performed by cutting with a
surface perpendicular to the principal component vector
and passing through the center of gravity of the cluster.
However, the cluster growth method [26] is used so that the
cluster contains a continuous region. Two seed surfaces
farthest from the cutting surface are selected and then
clusters are grown from the seed surfaces to the cutting
surface. At this time, a region which is not included in the
two newly generated clusters exists depending on the form
of the cluster. A continuous cluster is generated by merging
this region with the contacting clusters.

Partitioning using the principal component vector
calculated with PCA or CCA results in the following char-
acteristics. Partitioning in the principal component direc-
tion calculated with PCA results in the cluster being
partitioned in the direction with the broadest distribution,
and therefore the distribution is contained within a more
narrow range. This is effective for invisible surface culling.
Furthermore, the form of the cluster becomes nearly circu-
lar rather than long and thin. However, flat clusters are not
necessarily generated. On the other hand, partitioning in the
principal component direction calculated with CCA results
in flatter clusters than is the case with PCA, because the
cluster is partitioned into an aggregation of surfaces having
similar orientations. However, upon repetition of cluster
partitioning, sometimes long and thin, smoothly curving
clusters are generated rather than clusters which are nearly
flat surfaces. Combining the use of PCA and CCA results
in both types of characteristics and implements the genera-
tion of clusters which are more like flat surfaces.

A detailed partitioning procedure is discussed below.

Selecting two seed surfaces

Two seed surfaces are selected on a cluster. The two
seed surfaces are the surfaces with the maximum separation
along the principal component vector. The value Ri for
selecting seed surfaces is defined as follows:

Here, pmax is the principal component vector of Zrr or Brn.
The surface with the maximum value of Ri and the surface
with the minimum value of Ri are selected as the two seed
surfaces. Here, fs1 and fs2 are the seed surfaces and Rs1 =
max(Ri) and Rs2 = min(Ri).

Cluster growth

Clusters are grown from seed surfaces to form two
clusters (Fig. 2). In the initial condition, a cluster includes

only one seed surface. Cs1 and Cs2 are clusters correspond-
ing to fs1 and fs2 and in the initial state, fs1 ∈ Cs1 and fs2 ∈
Cs2.

Step 1: Among the surfaces adjacent to the surface
including Cs1, the surfaces where Ri > 0 are added to Cs1.
The step ends when all adjacent surfaces have been
checked.

Step 2: Among the surfaces adjacent to the surface
including Cs2, the surfaces where Ri < 0 are added to Cs2.
The step ends when all adjacent surfaces have been
checked.

Step 3: The cluster is completely partitioned by com-
bining regions not included in the two clusters with adjacent
clusters.

Selecting generated clusters

Each cluster is partitioned using the principal com-
ponent vector calculated with PCA and the sum of the
modeling error ε of the two resulting clusters is found. Next,
partitioning is performed in the same way using the princi-
pal component vector calculated with CCA. The sum of the
modeling error ε of the two resulting clusters is found. The
results from the partitioning process yielding the least sum
of modeling errors ε are employed.

4.3. Polygon generation

Concurrent with the cluster partitioning operation,
polygons approximating each cluster are generated (Fig. 3).
The detailed procedure is shown below (Fig. 4).

Fig. 2. Face cluster partitioning.

(16)

Fig. 3. Clusters and polygons.

37

Step 1: Extract the cluster partitioning boundary by
extracting the boundary between two newly generated clus-
ters.

Step 2: Register the points at both ends of the bound-
ary in Step 1 as vertices of the polygon. When the boundary
of Step 1 is closed, do not register vertices and do not
execute Step 3.

Step 3: Generate a polygon corresponding to the
cluster by linking the registered vertices along the cluster
boundary.

5. High-Speed Rendering Using the
Hierarchical Model

5.1. LOD control

The method for performing LOD control using the
proposed hierarchical model is discussed. The nodes of the
tree structure are examined by traversing each child node
from the root node of the tree structure until a child node
satisfying the following is reached:

Here, ε′ is the tolerance established according to the object.
ε is the modeling error calculated when the tree structure
was generated.

For example, the tolerance may be found with the
following formula in order to dynamically change the level
of detail according to the distance from the viewpoint:

Here, d is the distance along the line of sight from the
viewpoint to the center of the target cluster, and k is a
constant determined according to the resolution of the
screen, or the like.

When nodes are selected with the procedures dis-
cussed above and the child node of only one of two adjacent
clusters is selected, a gap is formed between two polygons
[Fig. 5(a)]. The gap is filled by connecting the vertices of
the adjacent polygons while maintaining the alignment of
the vertices of the boundary. A connected mesh is generated
with this procedure [Fig. 5(b)].

5.2. Back surface culling and invisible volume
culling

Because a cluster is partitioned so as to approach a
flat surface, the normal vectors of surfaces of a cluster come
to have nearly the same orientation upon partitioning. High-
speed calculations for back surface culling become possible
by including the distribution range of the normal vectors of
a cluster in each node of the tree structure.

For each node of the tree structure, the inner product
of the mean normal vector in a cluster and the normal vector
of each surface is calculated and the minimum value thereof
found. The normal of a surface exists inside the normal cone
(Fig. 6) calculated from the normal showing this minimum.
The back surface of this cluster can therefore be determined
at once by comparing this normal cone and the line of sight
during rendering. If it is determined that a node in the
hierarchy is a back surface, all child nodes thereof need not
be rendered and the rendering process can be accelerated.

The determination of whether a surface is within the
field of view can be made quickly and with the same
process. Specifically, for each node in the tree structure, a
sphere enclosing that cluster is generated in advance and

(17)

(18)

Fig. 4. Polygon generation.

Fig. 5. Polygons connecting.

38

stored in the tree structure. During rendering, this bounding
volume and the visible volume are compared. If the bound-
ing volume is outside the visible volume, the rendering
process is not performed for child and descendant nodes. If
within the visible volume, that node and the child and
descendant nodes are determined to be within the visible
volume. Also if the bounding volume is applied to the
boundary of the visible volume, the decision regarding the
interior of the visible volume is made for each child node
until it is determined whether the bounding volume is
entirely within or without the physical volume.

In this way, high-speed rendering can be imple-
mented by efficiently performing back surface culling and
invisible volume culling using the hierarchical data struc-
ture.

5.3. Occlusion culling

When models overlap within the image, there is a
surface which is behind the surface to the front and cannot
be seen. The rendering process can be accelerated by re-
moving these hidden surfaces.

Occlusion culling is performed using a visibility test
(occlusion query) which is provided in commercially avail-
able graphics processors. Using a rough model approxi-
mated with a small number of surfaces (Fig. 7), the depth
value thereof is written to a z buffer. Afterwards, for each
node in the tree structure, a visibility test is performed for
the polygons (Fig. 8) enclosing clusters in the image by
establishing and expanding the depth value in front of the
cluster. If it is determined that the polygon enclosing the
cluster is hidden, that node is removed. As the bounding

polygon is attached to the cluster, invisible surface culling
can be executed with good efficiency.

6. Experimental Results

A personal computer (CPU: Pentium IV 2 GHz,
memory: 4 GB) with a video card (ATI Radeon 9800 Pro)
is used in this experiment. The shape data used in this
experiment is the data “bunny” comprising 70,000 poly-
gons, published by Stanford University.

6.1. Experiment to generate a hierarchical
model

The results of generating hierarchical models using
different principal component vectors were compared. Fig-
ure 9 shows a graph comparing the mean modeling error
per unit area. The case in which both PCA and CCA were
used had a lower error compared to both the case of using
only PCA and the case of using only CCA. Also, partition-
ing using CCA generally had a lower error than PCA.

Fig. 7. Example of occluder.

Fig. 6. Normal cone.

Fig. 8. Bounding polygon.

Fig. 9. Approximation error.

39

Figure 10 shows the results of generating an approxi-
mation model comprising 250 polygons. The mean model-
ing error per unit area was (a) 53.4, (b) 33.7, and (c) 24.4.
Case (c) using both PCA and CCA generated polygons
more similar to the original model (d) than case (a) using
only PCA and case (b) using only CCA.

Figure 11 shows the results of generating approxima-
tion models of the bunny using different numbers of poly-
gons. More detailed shapes are expressed as the number of
polygons increases.

6.2. Local LOD control experiment

Rendering was performed using local LOD control.
Figure 12 shows an image rendered with half the model at
a high resolution and the remainder at a low resolution.
When the hierarchical data structure generated with the
proposed algorithm was used, the different resolutions
within the model can be finely established and smooth
connections can be made even between areas of different
resolution.

6.3. Large-scale model rendering experiment

One hundred copies of the bunny were randomly
established within a virtual space and a rendering experi-
ment was performed while changing the viewpoint of a

model comprising 7 million polygons. The depth values of
a rough model approximated with a small number of sur-
faces were recorded as in Fig. 15(a). Using those results,
occlusion culling was performed to generate the image
shown in Fig. 15(b). The case of combining LOD control
and invisible surface culling and the case of using only LOD

Fig. 10. Approximation model with 250 polygons.

Fig. 11. Approximation models of bunny.

Fig. 12. One model with different resolution parts.

40

control are shown in Figs. 13 and 14, respectively as graphs
of the rendering time per frame and the number of rendered
polygons. Rendering at 15 to 30 frames/s is possible when
LOD control and invisible surface culling are combined. A
simple comparison is not possible because of dependence
on the experimental environment, but the model comprising
7 million polygons in real time was displayed at a suffi-
ciently high speed, even in comparison to the conventional
algorithm. Meanwhile, in the case of LOD control alone,
the frame rate dropped to below 10 frames/s. Also, in the
case of only invisible surface culling, a maximum 10-sec-
ond rendering time per frame was necessary.

When the speed of movement of the viewpoint was
multiplied by 100 and the same experiment was performed,
the rendering time depended only on the number of poly-
gons rendered and rendering was possible at a speed of 15
frames per second or greater. Consequently, it could be
confirmed that high-speed rendering was possible with the
proposed algorithm, regardless of the amount of movement
of the viewpoint.

Continuous LOD control and conservative invisible
surface culling were performed with the proposed algo-
rithm. As a result, artifacts did not occur as in the case where
conventional discrete LOD control and approximate invis-
ible surface culling were performed.

7. Conclusions

In this paper, a new hierarchical, three-dimensional
data structure, based on recursive face cluster partitioning,
was proposed and a high-speed rendering process for large-

Fig. 13. Rendering time per frame.

Fig. 14. The number of polygons per frame.

Fig. 15. Result image of rendering.

41

scale form data using this data structure was implemented.
By combining principal component analysis and canonical
correlation analysis, clustering was implemented with a
smaller modeling error than with the conventional method.
By using the proposed hierarchical data structure, the level
of detail in any location within the model could be freely
controlled. It was also possible to correctly detect and
remove invisible surfaces which did not need to be rendered
in parallel with the LOD control processing. Consequently,
even in the case of a large movement in the viewpoint, an
image with few artifacts could be efficiently rendered with-
out a delay. The effectiveness of this algorithm was con-
firmed with experiments on local LOD control and a
rendering experiment for a large-scale model.

Acknowledgments. A portion of this research was
performed as part of the 21st Century COE Program “Form-
ing Fundamental Social Systems in Systems and Informa-
tion Science” and support was received from the Strategic
Information and Communications R&D Promotion Pro-
gramme, Ministry of Internal Affairs and Communications.

REFERENCES

1. Levoy M, Pulli K, Curless B, Rusinkiewicz S, Koller
D, Pereira L, Ginzton M, Anderson S, Davis J,
Ginsberg J, Shade J, Fu D. The digital Michelangelo
project: 3D scanning of large statues. Computer
Graphics (SIGGRAPH 2000 Proc), p 131–144.

2. Hoppe H. Progressive meshes. Computer Graphics
(SIGGRAPH ’96 Proc), p 99–108.

3. Hoppe H. View-dependent refinement of progressive
meshes. Computer Graphics (SIGGRAPH ’97 Proc),
p 189–198.

4. Luebke D, Erikson C. View-dependent simplification
of arbitrary polygonal environments. Computer
Graphics (SIGGRAPH ’97 Proc), p 199–208.

5. Xia JC, Varshney A. Dynamic view-dependent sim-
plification for polygonal models. Proc IEEE Visuali-
zation ’96, p 327–334.

6. El-Sana J, Varshney A. Generalized view-dependent
simplification. Computer Graphics Forum
1999;18:83–94.

7. Garland M. Quadric-based polygonal surface simpli-
fication. Ph.D. thesis. Carnegie Mellon University,
CS Dept, Tech Rep CMU-CS-99-105, 1999.

8. Garland M, Heckbert PS. Surface simplification us-
ing quadric error metrics. Computer Graphics (SIG-
GRAPH ’97 Proc), p 209–216.

9. Yoshida K, Kitajima K. Adaptive visual field-de-
pendent display of a polygon model. Trans IEICE
2000;J83-D-II:1507–1515.

10. Heckel B, Uva AE, Hamann B. Clustering-based
generation of hierarchical surface models. In: Witten-
brink CM, Varshney A (editors). IEEE Visualization
’98 Late Breaking Hot Topics. p 41–44.

11. Airey J, Rohlf J, Brooks F. Towards image realism
with interactive update rates in complex virtual build-
ing environments. Proc Symposium on Interactive
3D Graphics, p 41–50, 1990.

12. Coorg S, Teller S. Real-time occlusion culling for
models with large occluders. Proc ACM Symposium
on Interactive 3D Graphics, p 83–90, 1997.

13. Hudson T, Manocha D, Cohen J, Lin M, Hoff K,
Zhang H. Accelerated occlusion culling using
shadow frusta. Proc ACM Symposium on Computa-
tional Geometry, p 1–10, 1997.

14. Klosowski J, Silva C. The prioritized-layered projec-
tion algorithm for visible set estimation. IEEE Trans
Vis Comput Graphics 2000;6:108–123.

15. Klosowski J, Silva C. Efficient conservative visibility
culling using the prioritized-layered projection algo-
ri thm. IEEE Trans Vis Comput Graphics
2001;7:365–379.

16. Luebke D, Georges C. Portals and mirrors: Simple,
fast evaluation of potentially visible sets. Proc ACM
Interactive 3D Graphics Conference, p 105–106,
1995.

17. Teller SJ. Visibility computations in densely oc-
cluded polyhedral environments. Ph.D. thesis. CS
Division, UC Berkeley, 1992.

18. Aliaga D, Cohen J, Wilson A, Zhang H, Erikson C,
Hoff K, Hudson T, Stuerzlinger W, Baker E, Bastos
R, Whitton M, Brooks F, Manocha D. Mmr: An
integrated massive model rendering system using
geometric and image-based acceleration. Proc ACM
Symposium on Interactive 3D Graphics, p 199–206,
1999.

19. Funkhouser T, Khorramabadi D, Sequin C, Teller S.
The ucb system for interactive visualization of large
architectural models. Presence 1996;5:13–44.

20. Baxter B, Sud A, Govindaraju N, Manocha D. Gi-
gawalk: Interactive walkthrough of complex 3d envi-
ronments. Proc Eurographics Workshop on
Rendering, 2002.

21. Govindaraju N, Sud A, Yoon S, Manocha D. Interac-
tive visibility culling in complex environments with
occlusion-switches. Proc ACM Symposium on Inter-
active 3D Graphics, p 103–112, 2003.

22. Andujar C, Saona-Vazquez C, Navazo I, Brunet P.
Integrating occlusion culling and levels of detail
through hardly-visible sets. Computer Graphics Fo-
rum (Proc Eurographics 2000) 1999;19:681–692.

42

23. El-Sana J, Sokolovsky N, Silva C. Integrating occlu-
sion culling with view-dependent rendering. Proc
IEEE Visualization 2001, p 371–575.

24. Yoon SE, Salomon B, Manocha D. Interactive view-
dependent rendering with conservative occlusion
culling in complex environments. Proc IEEE Visuali-
zation 2003, p 163–170.

25. Garland M, Willmott A, Heckbert P. Hierarchical face
clustering on polygonal surfaces. Proc ACM Sympo-
sium on Interactive 3D Graphics, p 49–58, 2001.

26. Kalvin AD, Taylor RH. Superfaces: Polygonal mesh
simplification with bounded error. IEEE Comput
Graph Appl 1996;16:64–77.

27. Okuno T, Kume H, Iga T, Yoshizawa T. Multivariate
analysis. JUSE; 1971.

AUTHORS (from left to right)

Tokuo Tsuji (active member) received a B.S. degree in electrical engineering and computer science from the Department
of Engineering, Kyushu University, in 2000 and a Ph.D. degree in intelligent systems from the Graduate School of Information
Science and Electrical Engineering in 2005. Since then, he has been a COE Researcher at the Graduate School of Engineering,
Hiroshima University. His research interests include researching computer vision and computer graphics. He is a member of
the Robotics Society of Japan and the Japan Society of Mechanical Engineers.

Hongbin Zha received a B.S. degree in electrical engineering from Hefei University of Technology (China) in 1983 and
enrolled in the Kyushu University Graduate School of Engineering in 1985, receiving a Ph.D. degree in 1990. He then became
an assistant in the Computer Science Department, an assistant professor in the Engineering Department in 1991, and an assistant
professor of research in the Graduate School’s Information Science and Electrical Engineering Department in 1996. Since 2000,
he has taught at the Information Science Center of China’s Beijing University. He holds a doctorate. He is engaged in research
on robotics, robot vision, and the modeling and recognition of three-dimensional models. He is a member of the Information
Processing Society of Japan and the Robotics Society of Japan.

Tsutomu Hasegawa (active member) received a B.S. degree in electron physics from Tokyo Institute of Technology in
1973 and became a researcher at the National Institute of Advanced Industrial Science and Technology. Since 1992 he has been
a professor at the Graduate School of Information Science and Electrical Engineering, Kyushu University. His research interests
include intelligent robots. He holds a doctorate, and is a member of the Society of Instrument and Control Engineers, the Institute
of Electrical Engineers, and the Japan Society of Mechanical Engineers.

Ryo Kurazume received an M.S. degree in mechanical physics engineering from Tokyo Institute of Technology in 1991
and joined Fujitsu Laboratories. In 1995, he became an assistant in the Department of Mechano-Aerospace Engineering at
Tokyo Institute of Technology. In 2000, he was a guest researcher at Stanford University and also engaged in doctoral research
at the University of Tokyo Institute of Industrial Science. He has been an assistant professor at the Graduate School of
Information Science and Electrical Engineering, Kyushu University, since 2002. His research interests include multirobot
systems, walking mechanics, and laser measurement. He is a member of the Robotics Society of Japan and the Japan Society
of Mechanical Engineers.

43

