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Abstract

Several position identi�cation methods are being
used for mobile robots. Dead reckoning is a popular
method but due to the accumulation error from wheel
slippage, reliability is low for the measurement of long
distances especially on uneven surfaces. Another pop-
ular method is the landmark method, which estimates
current position relative to known landmarks, but the
landmark method's limitation is that it cannot be used
in an uncharted environment. Thus, this paper pro-
poses a new method called "Cooperative Positioning
System (CPS)" that is able to overcome these short-
comings. The main concept of CPS is to divide the
robots into two groups, A and B respectively, group
A remains stationary and acts as a landmark while
group B moves and then group B stops and acts as
a landmark for group A. This process is repeated un-
til the target position is reached. Compared with dead
reckoning, CPS has a far lower accumulation of posi-
tioning error, and can also work in three-dimensions.
Furthermore, CPS employs inherent landmarks and
therefore can be used in uncharted environments un-
like the landmark method. In this paper, focus will be
on the discussion of the relationship between moving
con�gurations of CPS and its positioning accuracy for
the latest prototype CPS model, CPS-III, using sim-
ulation and analytical techniques. Optimum moving
strategies in order to minimize positioning error are
then discussed and veri�ed through experiments.

1 Introduction

An accurate position identi�cation method for a
mobile robot that can be used in various environ-
ments is an important consideration in the design of
autonomous mobile robots. Although in recent years
accurate positioning on the surface of earth has been
made possible by the development of GPS, it cannot

be used underground nor inside buildings. There-
fore, to realize an accurate positioning system that
is able to perform based on local information about
the robot and its surroundings is still an important
research theme.

A number of simple techniques have been proposed
based on local information such as dead reckoning,
whereby mobile robots with wheels identify their cur-
rent position from the number of rotations of the
wheels [1],[2]. The dead reckoning method is simple
and therefore easy to implement, using only internal
sensors which allows the use in uncharted environ-
ments. However the dead reckoning method's draw-
back is that the position recorded is directly a�ected
by the wheel contact with the ground, the type of
wheel �xture, and by external disturbances such as
tire slip, thus resulting in serious positioning accuracy
problems over long distances and with unpaved roads
or other outdoor environments. In addition, dead
reckoning also cannot be used for three-dimensional
positioning involving level di�erences.

Other, more accurate positioning techniques for
mobile robots have been proposed. These techniques
use optical or other sensors on the robots to detect
walls, pillars, and other landmarks in the work envi-
ronment [3],[4],[5]. The robots then are able to deter-
mine their positions from their positional relationship
with such landmarks. The landmark method can give
highly accurate positioning information over long dis-
tances and in rugged environments, but requires the
previous placing of landmarks. Thus, it cannot, for ex-
ample, be used for planetary exploration robots that
would be in uncharted environments. With these con-
siderations in mind, we have proposed a new method
named "Cooperative Positioning System (CPS)[6]"
and discussed its viability through measurement ex-
periments using specially constructed robots [6],[7].
CPS overcomes the shortcomings of the previous two
methods and thus enables position identi�cation in



unfamiliar environments and uneven surfaces utilizing
only local information stored by multiple robots.
Fig. 1 shows an example of CPS that consists of

one parent robot equipped with sensors and two child
robots equipped with targets for measurement.

1. While the parent robot whose initial position is
measured previously remains stationary, child robots
1 and 2 travel certain distances and stops. 2. Par-
ent robot measures distances, azimuth angles, and el-
evation angles from the child robot 1 with the sen-
sors equipped, and calculates the positions of the child
robot 1 3. Same thing is done for the child robot 2
5. Steps 1 to 4 are repeated until the robot group has
reached the target position.

1. While the parent robot whose initial position
is measured previously remains stationary, child
robots 1 and 2 travel certain distances and stops.

2. Parent robot measures distances, azimuth angles,
and elevation angles from the child robot 1 with
the sensors equipped, and calculates the positions
of the child robot 1.

3. Parent robot measures the child robot 2 in the
same way as step 2

4. Parent robot travels a certain distance and stops.
Then, parent robot measures distances, azimuth
angles, and elevation angles from the child robots,
and calculates own position.

5. Steps 1 to 4 are repeated until the robot group
has reached the target position.

CPS has the following characteristics:

1. Utilizing high accuracy sensors developed for sur-
veying to measure stationary points, CPS pro-
vides a good basis for higher positioning accuracy
compared with the dead reckoning method that
uses wheel rotation.

2. Unlike the landmark method, CPS does not re-
quire apriori knowledge of landmark locations.
It allows measurement of position not only in
foreign environments but even underground or
within building where GPS cannot be used.

3. By measuring elevation angles, CPS can deter-
mine three-dimensional positions, which is not
possible with dead reckoning.

From these characteristics, CPS can be used e�ec-
tively as the automatic control system for robots that
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(2) Robot 0 measures 
      robot 1. 

(1) Robot 1 and 2 move.
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      robot 2. 

(4) Robot 0 moves and
      measures robots 1 and 2.
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Figure 1: Example of CPS

cleans the inside of train stations or underground mar-
kets, and for exploration robots such as a planetary
rover [6].

Two prototype models have been introduced named
CPS-I that is equipped with laser and photo detector,
and CPS-II that equipped with laser range �nder and
corner cubes respectively. Through measurement ex-
periments by using these models the viability of CPS
have been considered [7].

Since CPS determines position by successive mea-
surements of relative distances and angles from sta-
tionary robots, positioning errors are accumulative
and position accuracy decreases. The degree of these
accumulated errors is in
uenced not only by the accu-
racy of the sensors but also by the moving strategies
and movement histories of the multiple robots. With
these considerations, discussions have been made of
the possibility to estimate positioning accuracy of CPS
for various moving strategies by assuming the mea-
surement errors have Gaussian distributions and eval-
uating accumulated errors as a propagation of error
variance matrixes [6].

In this paper, discussion will be made on the basic
properties of accumulated errors for the latest model of
CPS named CPS-III, and the optimummoving strate-
gies to minimize the accumulated errors over long dis-
tances will be proposed. In Section 2, the basic equa-
tions will be introduced for the propagation of ac-
cumulated errors by utilizing weighted least square
method. By using these equations it is possible to



realize the information fusion of various sensor data
and to estimate positioning accuracy more eÆciently
than the previously proposed method [6]. In Section 3,
the CPS third model, CPS-III will be introduced. In
Section 4, moving strategies to minimize the accumu-
lation of positioning error for CPS-III is discussed, and
three moving strategies to optimize positioning accu-
racy are proposed. In Section 5, experimental results
are shown.

2 The basic equations for the propaga-
tion of accumulated errors

This section introduces the error analytical tech-
nique utilizing weighted least square method. This
method enables the information fusion of various sen-
sor data and allows the accumulated error calculation
to be treated in a systematic way.

2.1 Estimation of positioning accuracy by
weighted least square method

As shown in Fig. 1(4), there are three robots
and if the positions of two robots are already known
and if the third robot is able to measure its dis-
tance, azimuth and elevation angles relative to the
other two then the third robot's position can be de-
termined as follows. We de�ne the positions of robots
0, 1, and 2 as P0(x0; y0; z0; �0), P1(x1; y1; z1; �1), and
P2(x2; y2; z2; �2) and relative distances , azimuth and
elevation angles from robot 0 to robots 1 and 2 as
r1; r2; �1; �2;  1, and  2. Equations that are estab-
lished (observation equations) are

(x0 � xi)
2 + (y0 � yi)

2 = r2i cos
2 i (1)

z0 = zi � ri sin i (2)

�0 = ��i + tan�1
yi � y0
xi � x0

(3)

for i = 1 and 2. If the absolute position of robot i is
~Pi(~xi; ~yi; ~zi; ~�i) but is measured as Pi = (~xi+dxi; ~yi+
dyi; ~zi + dzi; ~�i + d�i) then from the Taylor expansion
of above equations

aidx+ bidy = (ri cos i � di)

+aidxi + bidyi + cos idri � ri sin id i (4)

dz = ~zi�ri sin i� ~z0+dzi�sin idr�ri cos id i (5)

�
bi

di
dx+

ai

di
dy � d�0 = ( ~�i + ~�0 � tan�1

~yi � ~y0
~xi � ~x0

)

�
bi

di
dxi +

ai

di
dyi + d�i (6)

can be obtained by assuming the errors are small and
the second and higher order terms may be disregarded,
where di =

p
( ~xi � ~x0)2 + ( ~yi � ~y0)2, ai = � ~xi� ~x0

di

and bi = �
~yi� ~y0
di

.
Next, we de�ne

A =

0
BBBBBB@

a1 b1 0 0
a2 b2 0 0
0 0 1 0
0 0 1 0
� b1
d1

a1
d1

0 �1

� b2
d2

a2
d2

0 �1

1
CCCCCCA

(7)

L =

0
BBBBBB@

(r1 cos�1 � d1)
(r2 cos�2 � d2)
~z1 � r1 sin 1 � ~z0
~z2 � r2 sin 2 � ~z0

�1 + ~�0 � tan�1 ~y1� ~y0
~x1� ~x0

�2 + ~�0 � tan�1 ~y2� ~y0
~x2� ~x0

1
CCCCCCA

(8)

and substitute dxi; dyi and dzi as 0 by assuming pre-
vious measurements are correct, then Eqs.(4), (5), (6)
are

AX = L (9)

where X = (dx0; dy0; dz0; d�0)
T . Resulting in the er-

ror equation
V = L�AX (10)

Furthermore the error variance of the observed
value L can be derived from the averages of the square
of Eqs.(4), (5), and (6) as

�L = K1�K
T
1
+K2�pK

T
2

(11)

where K1 and K2 are

K1 =

0
BBBBBB@

a1 b1 0 0 0 0 0 0
0 0 0 0 a2 b2 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
� b1
d1

a1
d1

0 0 0 0 0 0

0 0 0 0 � b2
d2

a2
d2

0 0

1
CCCCCCA

(12)

K2 =

0
BBBBBB@

cos 1 0 �r1 sin 1
cos 2 0 �r2 sin 2
� sin 1 0 �r1 cos 1
� sin 2 0 �r2 cos 2

0 1 0
0 1 0

1
CCCCCCA

(13)

And � is the error variance matrix for the positions
of robot 1 and 2 and�p is the error variance matrix for
the measurement of distances, azimuth and elevation
angles.

� =

�
�11 �12

�21 �22

�
(14)



�p = diag(�2r ; �
2

�; �
2

 ) (15)

From Eqs.(10) and (11) the change in position of
robot 0 (X) that minimizes the sum of the squared
remain error under the weight of ��1L can be derived
by solving the following equation

minVT��1L V (16)

as

X = (AT��1L A)�1AT��1L L

= BL (17)

Finally, following the next steps to calculate the
optimum position of robot 0, i) assume arbitrary
position of robot 0 as ~P0. ii) calculate X =
(dx0; dy0; dz0; d�0)T form Eq.(17). iii) repeat ~P0  
~P0 + X until X ! 0. And thus the error variance of
the position of robot 0 can be calculated form Eq.(17)
as

�00 = B�LB
T = (AT��1L A)�1 (18)

and the covariance matrixes between robots 0 and 1,
and robots 0 and 2 are

(�01;�02) = BK� (19)

By repeating the above steps, the positioning accu-
racy of the robot after performing several measure-
ments successively can be estimated by calculating the
error variance matrix and covariance matrixes from
Eqs.(18) and (19).

3 CPS-III

This section introduces the latest prototype model
of CPS (CPS-III shown in Fig. 2). CPS-III consists
of one parent robot that is equipped with a high ac-
curacy laser range �nder and two child robots that
are equipped corner cubes. The basic method of po-
sition identi�cation is identical to that of the method
presented in Fig. 1.

The master robot is equipped with a laser range
�nder supplied by TOPCON Ltd. (Table 1) that has
the ability to automatically search and trace a corner
cube in any arbitrary position and a 2-axis inclinome-
ter. By detecting the laser re
ected from the child
robots, the master robot then automatically and ac-
curately measures the distances and the azimuth an-
gles from the child robots. On top of each child robot
is six corner cubes arranged at intervals of 60 degrees
around the vertical axis and with this mechanism a
laser beam that is projected from any direction can

be accurately re
ect. Each robot has a built-in mi-
crocomputer (8086-8MHz, Japan System Design Co.,
Ltd.), driving circuit, battery (Yuni-Z, YUASA BAT-
TERY Co., Ltd.), and communication system (HRF-
600 (RS-232C), HERUTU Co,. Ltd.), and is con-
trolled centrally from the host computer (Pentium Pro
200).

Table 1: Speci�cations of a range �nder.

AP-L1 (TOPCON Ltd.)
Range 4 � 400 [m]
Resolution (distance) 0.2 [mm]
Resolution (angle) 5 ["]
Precision (distance) �3+2ppm [mm]
Precision (angle) �5 ["]

Parent robot
Child robot 1

Child robot 2

Figure 2: Total view of the mechanical model CPS-III.

4 Optimum moving con�gurations of
CPS-III

This section discusses the relationship between the
moving con�guration of CPS-III and its position-
ing accuracy by computer simulation and analytical
method, and proposes three moving strategies to op-
timize positioning accuracy.

First assume the following conditions.

1. CPS consists of one parent robot equipped with
laser range �nders and two child robots equipped
with corner cubes.

2. Each robot has accurate sensors to measure its
orientation around roll and pitch axis to gravity.

3. Robots move in a 2-D plane.



4. Angle and distance errors have Gaussian distribu-
tions and therefore have mean averages of zero.

5. The error variances of distance and angle mea-
surements are constant with any measured dis-
tances and angles.

Assumption 5 is a inherent characteristic of the dis-
tance measurement sensor that utilizes a laser or elec-
tromagnetic waves. For this sensor, measurement er-
ror is not in
uenced by the measured distance when
the distance between measurement points is close and
the refractive index is not a�ected by temperature
and humidity di�erences in the air. The validity of
assumptions 4 and 5 have already been con�rmed by
iteration of error measurement experiments with CPS-
III.

In addition, several other conditions need to be as-
sumed for the computer simulations.

1. The standard deviation of the distance measure-
ment sensors is 3 [mm] and the angle measure-
ment sensor is 5 [sec].

2. Each robot moves along a straight line towards
each target point that is placed 1 [km] ahead and
the movement distance of each step is 10 [m]. Re-
sulting in a total of 100 movements.

3. The positioning accuracy at the target position
is given as a trace of parent robot error variance
matrix. Error variance matrix and error covari-
ance matrixes are calculated by Eqs.(18) and (19)
at each step.

4. As shown in Fig. 3, robots move along the y-
axis and the distances between parent and child
robots are r1; r2 and the azimuth angles to the
child robots from the parent robot are �1; �2.

4.1 Simulation analysis

First, consider the case that the robots repeat only
one type of movement by using a set of parameters r1,
r2, �1, and �2 to reach the target points. The mov-
ing strategy that minimizes positioning error when the
robot arrives at the target position is then calculated
by using Newton method. Where 32,400 initial condi-
tions are generated by dividing the distance between
robots r1 and r2 from 0 m to 1000 m into 10 parts,
and angle �1 and �2 from 0 [deg.] to 360 [deg.] into
18 parts. From the results of these simulations, three
local minimums were discovered that corresponded to
the optimum moving strategies as shown in (Table
2).

y

xChild robot 1

Child robot 2 r 1
r 2

Parent robot

3

2
1

1km

Target positions

10m

φ1

φ 2

Figure 3: Simulation model.

Table 2: Optimum robots con�gurations.

r1[m] r2[m] �1[deg:] �2[deg:] �2x + �2y
A 80.3 80.3 3.0 176.1 0.0203
B 528.2 518.0 53.1 126.3 0.0218
C 72.7 106.2 89.6 -90.5 0.0207

For two local minimums A and B, both cases in-
dicate the child robots are symmetrical towards the
target direction. Local minimum for A shows all the
robots are on a line perpendicular to the target direc-
tion while for B the azimuth angles to the child robots
from the parent robot are 45 � 55[deg:]. From here
onward each is de�ned as optimum moving strategies
A and B respectively as shown in Fig. 4. In addition,
local minimum C is a moving strategy in which all
the robots are along a line toward the target direction
and from here onward is de�ned as optimum moving
strategy C as shown in Fig. 4.

Next, consider the case that the robots repeat two
moving strategies alternatively. In the same manner
as the �rst case, the consecutive moving strategies
that minimize positioning error at target position is
calculated by using Newton method from various ini-
tial conditions. From these simulations, the moving
strategies that minimize the positioning error at tar-
get positions are given as a combination of three opti-
mum moving strategies A, B, and C found in the �rst
case which consequently increases the likelihood that
A, B, and C are part of the optimummoving strategy.



45̃ 55[deg.]

Optimum moving configuration A Optimum moving configuration B

Optimum moving configuration C

Figure 4: Optimum moving con�gurations.

4.2 Derivation of analytical error equa-
tion for each optimum moving strat-
egy

As previously explained in Section 2, positioning
accuracy after robot movements of a certain distance
can be written as a recursive equation of the error
variance matrix and error covariance matrixes from
Eqs.(18) and (19). And in order to derive the answers
for these recursive equations is very diÆcult because of
the complexity of the equations. But since the robots
orientation of the optimummoving strategies are sym-
metrical, it is possible to simplify each term of obser-
vation equations Eq.(9) so the accumulated errors of
the solutions of each strategy can be easily analyzed.
This section discusses these characteristics of position-
ing errors for the optimummoving strategies A, B, and
C and considers the mechanisms that the errors occur.

4.3 Analytical solution for each optimum
moving strategy

The analytical solution of positioning accuracy for
optimummoving strategies A and B are shown in Ap-
pendix A. This solution shows the error variance ma-
trix after the parent robot moves n times where the
position of the parent robot is (x; y), the positions of
the child robots are (x + d; y + h) and (x � d; y + h),
and the distance that each robot travels in y-direction
is l.

Likewise, the analytical solution of positioning ac-
curacy for optimum moving strategy C is shown in
Appendix B where the child robots are along the line
towards the target direction with a distance of r1 and
r2, and the distance that each robot travels in the y-
direction is l.

From the analytical examination of these equations,
the optimum conditions for each optimum moving
strategy in order to minimize error variance of par-
ent robot at target position, �2x + �2y, is derived as
shown in Table 3.

Table 3: Optimum con�gurations of moving strategies
A, B, and C.

r[m] �2x �2y �2x+�
2
y

A 70.6 0.0202 0.0003 0.0205
B 434.2 0.0201 0.0016 0.0217

r1[m] r2[m] �2x �2y �2x+�
2
y

C 63.2 90.7 0.0198 0.0009 0.0207

Also, the following characteristics are revealed from
the analytical solutions of each optimum moving con-
�guration.

1. In optimum moving con�gurations A and C, the
measured distance and angle are used for posi-
tioning, independently. On the other hand, in
optimum moving con�guration B, measured dis-
tance and angle for the positioning are coupled.
Thus, optimum moving con�guration B is more
advantageous in the case that the distance be-
tween robots is large because the angle measure-
ment error, which increases with the distance be-
tween robots, is limited. By using analytical so-
lutions, variation of positioning error of optimum
moving strategies as a function of the distance
between robots are shown in Fig. 5.

2. Optimummoving strategies are given as shown in
Table 3 in any distance and angle measurement
errors.

5 Experiments

Experiments to verify the validity of proposed opti-
mummoving strategies were performed using CPS-III
in a 
at outdoor environment. CPS-III moved by op-
timum moving strategies A and C, and unoptimum
moving strategy D ((�1 = 80[deg:]; �2 = 110[deg:]) for
a comparison as shown in Fig. 6. Positioning accu-
racy after the robots moved forward and backward 5
times was measured by the observation of �xed-points.

Experiments for each moving strategy were per-
formed 10 times and the average positioning error
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Figure 6: Moving strategy D for experiments.

is compared with the corresponding analytical value
(evaluated in A and B) using distance measurement
error is 3 [mm] and angle measurement error is 5 [sec.]
(shown in Table 4).

Table 4: Positioning accuracy for optimum moving
strategies. Theoretical values are shown in ().q

�2x + �2y[mm] �� [deg.]

A 100.3 (22.9) 0.387 (0.054)
C 38.2 (9.8) 0.085 (0.005)
D 175.1 (100.6) 1.162 (0.260)

Examining the results of these experiments, the po-
sitioning accuracy of optimummoving strategy C is as
expected the most accurate with an error of only 28.8
[mm] (0.07% of travel distance) after 42 [m] of move-
ment by the parent robot. In addition, the positioning
accuracies of both optimummoving strategies A and C
are higher than that of the unoptimum moving strat-
egy D, which proves the e�ectiveness of the proposed
optimum moving strategies.

6 Conclusion

This paper discusses the basic property of accumu-
lated errors for the latest CPS model (CPS-III) using
computer simulation and analytical methods. Three
optimummoving strategies are then proposed for a cri-
terion of positioning accuracy and are veri�ed through
experiments with CPS-III.

To apply CPS in actual work environments, choice
of the moving strategies will became an important
problem. This paper presents basic characteristics of
this problem. For example, the analysis of three op-
timum moving strategies of CPS that may be used in
di�erent environments. Optimum moving strategy B
is suitable for large open area because long distance
measurement is possible without lossing accuracy. On
the other hand, optimum moving strategies A and C
can be better adapted in environments with obstacles
where the robot's �eld of view is hindered.

Future work will focus on CPS for speci�c appli-
cations, such as a planet exploration robot system or
janitorial robots, and the optimizing number of robots
and control methodology for positioning accuracy and
adaptability in any environment.

A Analytical error solution for opti-

mum moving strategies A and B

This section shows the derivation of the analytical
error solution after each robot movement for optimum
moving strategies A and B.

First, de�ne the position of parent robot as (x; y),
the positions of child robots as (x+ d; y+h) and (x�
d; y + h), and the distance that each robot travels in
the y-direction as l. Each term of the parent robot
error variance matrix after the robot moves n steps
can be derived by Eq.(18) as follows.

�n =

0
@ �2x;n �xy;n �x�;n

�xy;n �2y;n �y�;n
�x�;n �y�;n �2�;n

1
A (20)

If we assume the initial positioning error equals 0,
then each term of the parent robot error variance ma-
trix after 1 robot movement step is

�2x;1 =
2L2

1L
2
2 � d

2l2

2d2L2

2

�2r +
l2

2
�2� (21)

�2y;1 =
l2d2(�2r � L

2
1�

2

�)(�
2
r � L

2
2�

2

�) +K�2r�
2

�

2d2fL2
1
(�2r � L

2
2
�2�) + L2

2
(�2r � L

2
1
�2�)g+K�2�

(22)

�2�;1 =
h2L2

2 + (h+ l)2L2
1

2d2L2
1
L2

2

�2r + �2� (23)



�x�;1 =
2hL2

2 + ld2

2d2L2
2

�2r �
l

2
�2� (24)

where,

L2

1 = d2 + h2 (25)

L2

2
= d2 + (h+ l)2 (26)

K = 2(L2

1 + L2

2)L
2

1L
2

2 (27)

And each term of the parent robot error variance ma-
trix after n robot movement steps is

�2x;n = �2x;1 + �2x;n�1 + l2�2�;n�1 � 2l�x�;n�1

= n�2x;1 +
n(2n� 1)(n � 1)l2

6
�2�;1

�n(n � 1)l�x�;1 (28)

�2y;n = �2y;1 + �2y;n�1 = n�2y;1 (29)

�2�;n = �2�;1 + �2�;n�1 = n�2�;1 (30)

�x�;n = �x�;1 + �x�;n�1 � l�
2

�;n�1

= �x�;1 �
n(n� 1)l

2
�2�;1 (31)

�y�;n = �xy;n = 0 (32)

B Analytical error solution for opti-
mum moving strategy C

This section shows the derivation of the analytical
error solution after each robot movement for optimum
moving strategy C.

First, de�ne the position of the parent robot as
(x; y) and the child robots are along on the line to-
wards the target direction with a distance of r1 and
r2, and the distance that each robot travels in the y-
direction as l. Each term of the parent robot error
variance matrix after n robot movement steps can be
derived by Eq.(18) as follows. If we assume the ini-
tial positioning error equals 0, then each term of the
parent robot error variance matrix after 1 robot move-
ment step is

�2x;1 =
l2(r21 + r22) � 2lr1r2(r1 � r2) + 4r21r

2
2

(r1 + r2)2
�2� (33)

�2y;1 = �2r (34)

�2�;1 =
2fl2 + l(r1 � r2) + r21 + r22g

(r1 + r2)2
�2� (35)

�x�;1 =
l2(r21 � r

2
2)� 2r1r2(r1 � r2)� 4lr1r2

(r1 + r2)2
�2� (36)

And each term of the parent robot error variance ma-
trix after the n robot movement steps is

�2x;n = �2x;1 + �2x;n�1 + l2�2�;n�1 � 2l�x�;n�1

= n�2x;1 +
n(2n� 1)(n� 1)l2

6
�2�;1

�n(n � 1)l�x�;1 (37)

�2y;n = �2y;1 + �2y;n�1 = n�2r (38)

�2�;n = �2�;1 + �2�;n�1 = n�2�;1 (39)

�x�;n = �x�;1 + �x�;n�1 � l�
2

�;n�1

= n�x�;1 �
n(n� 1)l

2
�2�;1 (40)

�y�;n = �xy;n = 0 (41)
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