Making gait recognition robust to speed changes using
mutual subspace method

Yumi Iwashita', Mafune Kakeshita?, Hitoshi Sakano® and Ryo Kurazume

Abstract— Mutual subspace method (MSM), which is one of
image-based approaches, showed strong discrimination capa-
bility in gait recognition. In general, 2D image matrices are
transformed into 1D image vectors to be used as input into
MSM, and then principal component analysis (PCA) is applied
to 1D vectors to generate a subspace. However, due to the high
dimensionalities of 1D vectors, the evaluation accuracy of the
covariance matrix in PCA is not high enough. This results in a
decrease in performance, especially in case that speed difference
between gallery and probe dataset is big. Thus in this paper we
propose a method, which expands the MSM-based method, to
recognize people with higher accuracy. The proposed method
divides the human body area into multiple areas, followed
by adaptive choice of areas that have high discrimination
capability. Moreover, the proposed method utilizes the frieze
pattern, which is one of gait features, as an additional input into
MSM. The use of divided areas and the frieze pattern allows
us to evaluate the covariance matrix with higher accuracy. In
experiments we applied the proposed method to challenging
databases with speed variations, and we show the effectiveness
of the proposed method.

I. INTRODUCTION

Gait is one of biometrics which do not require any
interaction with a subject and can be obtained from a
distance. Gait-based person recognition has been providing
new opportunities in various applications, such as surveil-
lance system in public [6] and personalized robots which
provide adaptive service to people [11]. In general, gait-
based person identification methods extract features from
time-series gait images, followed by person identification
based on extracted features. There are many existing methods
for feature extraction, such as gait energy image (GEI) [5],
active energy image (AEI) [20] and frame difference frieze
pattern (FDFP) [16], which reported good performance with
publicly available gait databases [8] [1].

However, there are several causes which make the per-
formance of gait recognition worse. Since appearance-based
method is sensitive to appearance changes, the performance
can be worse in case that a subject’s appearance is different
from that in the database. A possible situation is walking
speed change. The walking speed change causes variations
in pitch and stride, which result in appearance changes.
To address this problem, existing methods have focused on
transforming the gait features from various speeds into a
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Fig. 1. (a) Examples of gait images in OU-ISIR Treadmill Dataset A
[13]. These images show that there are dynamic areas and static ones while
walking, (b) an example frieze pattern (F'Pp) of 7 km/h.

common walking speed or on extraction of speed-invariant
gait feature. Mansur et al. proposed a method [15] which
utilized a cylindrical manifold to synthesize constant-speed
gait images. Zeng et al. proposed a method for gait recogni-
tion based on silhouette features with deterministic learning
theory (DLT) [19]. Guan et al. proposed a classifier ensemble
method based on Random Subspace Method (RSM) concept
[4]. Experimental results with OU-ISIR Treadmill Dataset A
[13] by the RSM-based method showed the best performance
compared with other methods.

In [9] we proposed a new idea that speed information
does not have to be regarded as a critical information in
gait recognition but appearance information is important,
since speed can change easily due to external factors, such
as crowded area and red traffic lights. Thus we regarded
that an image set-based matching approach could solve the
gait recognition problem. To show the effectiveness of this
idea, we proposed a method [9] which applied a mutual
subspace method (MSM) [17] to gait images. Experimental
evaluations with a challenging gait database (OU-ISIR Gait
Speed Transition Dataset [15]) showed that the MSM-based
method [9] outperformed the state-of-the-art method [15].

We also evaluated the MSM-based method on another
dataset (OU-ISIR Treadmill Dataset A [13], which was
collected on a treadmill with speed variations), and those
results are shown in experiments in this paper. In case
that speed variations are small between gallery and probe
dataset, the MSM-based method showed good performance.
However, in case that the speed variations are big, such as
fast walk (7 [km/h]) for gallery dataset and slow walk (2
[km/h]) for probe dataset (Fig. 1 (a)), the performance was
worse than the RSM-based method [4]. We believe this could
be because of the following reason. As we can see in Fig. 1
(a), there are dynamic areas and static areas while walking.
Even though there is speed difference between images, static
areas show similar appearance. On the other hand, dynamic



areas show different appearance. The MSM-based method
[9] used entire area in each image as input into MSM, and
this causes decrease in performance because of the use of
dynamic area.

In general in MSM, a set of images for each class are
given as an input dataset into MSM and a model for each
class is obtained as a subspace. To obtain the model, images
are transformed into 1D image vectors, which are high
dimensional vectors, and then principal component analysis
(PCA) is used to generate subspace from input vectors.
However, as Yang et al. [18] pointed out that the covariance
matrix cannot be evaluated accurately due to its large size.
Moreover, transforming 2D images into 1D image vectors
results in reducing information of shape properties, due to
the loss of geometrical information.

To deal with these issues, we propose a method, which
expands the previous MSM-based method [9], to recognize
people more robust to speed variations than the previous
method. In the proposed method, the human body area in
each image is divided into multiple areas, and MSM [9] is
applied to each area. The idea of dividing area into small
multiple areas, which we proposed in [10], is integrated in
the MSM for the first time to the best of our knowledge.
A matching weight at each area is calculated automatically,
and areas which have higher discrimination capabilities are
adaptively selected based on the calculated weights. Then the
subject is identified by weighted integration of similarities of
all areas.

Basically the use of divided areas has an advantage that
it reduces the dimension of input vectors of MSM. This
results in higher accuracy of the evaluation of the covariance
matrix than the use of full area. The same advantage can
be obtained by extracting gait features from images, which
represent gait images efficiently with smaller size of feature
vectors, rather than the direct use of image vectors as input
into MSM. There are existing methods to extract features
from gait images [14] [20] [12] [7], and among them we
focus on frieze pattern [12] and affine moment invariants
(AMIs) [7], which show high performance with small size of
feature vector. In the proposed method we also utilizes gait
features as input into MSM, in addition to image vectors.
Moreover, these two gait features describe shape properties.
Thus the use of gait features gives another advantage that it
incorporates shape properties into the covariance matrix.

Overall, the proposed method has three advantages: (i) the
extension of the MSM-based method by dividing the subject
area into multiple areas [10] for the purpose of high accuracy
of the evaluation of the covariance matrix, (ii) the extension
of the MSM-based method using gait features (AMIs and
frieze patterns), and (iii) the evaluation of the MSM-based
method with two challenging gait databases, which consist
of gait images with variety of speeds, such as OU-ISIR
Treadmill Dataset A [13] and CASIA-C Dataset [1]. We
experimentally confirm that the proposed method performs
better than existing methods.

II. MUTUAL SUBSPACE METHOD USING DIVIDED AREAS
FOR GAIT RECOGNITION

In this section we briefly review MSM. Then, we introduce
a method to recognize people more robust to speed variations
than existing methods.

A. Mutual subspace method

MSM is regarded as one of powerful image set - image
set matching techniques. Let us assume C' class pattern
recognition problem. Bases of the class ¢ gallery subspace
and input subspace are represented as ¢° and 1, respectively.

Similarities in MSM are based on canonical angle 65 (n =
1,...,N,and N is the number of canonical angles) between
two subspaces. More specifically, a similarity s{, is a square
of a cosine of a canonical angle (i.e. cos?6<), and similarities
are calculated as eigenvalues of the following matrix [2].

M
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In our method we use the maximum eigenvalue s{ as the

similarity between two subspaces. Class c is chosen, in case
that the maximum eigenvalue s{ is the highest one among
all classes.

B. Proposed gait recognition method robust to speed varia-
tions

We explain the proposed method using divided areas, and
we introduce the use of gait features as input into MSM.

1) Mutual subspace method using divided areas: The
main steps of the gait recognition with MSM using divided
areas are as follows:

Step 1 We divided each image in the gallery dataset and

the probe dataset into K equal areas, according to
the height. Figure 1 (a) shows an example of a
human body area divided into K =5 areas.

Step 2 We applied MSM to images at each area, and at
each area we calculated a similarity between each
person in the gallery dataset and a subject in the
probe dataset.

Step 3 We estimated a matching weight at each area ac-
cording to the similarity. We set matching weights
high in areas with less appearance changes and low
in areas with appearance changes.

Step 4 Finally we identify the subject by weighted inte-
gration of similarities of all areas.

Details of Steps 2 to 4 are explained below.

In each of K divided areas a similarity s{ , (k=1,..., K)
between gait images of the subject and those of class ¢ in
the gallery dataset is calculated. Here, s{ , is calculated as
the maximum eigenvalue from Eq. 1. Matching weights are
estimated as follows. In each area similarities between the
subject and all classes in the gallery dataset are sorted in a
descending order, and a matching weight wy, of each class
is given according to its resulting order. Similarities of all
areas are integrated by

K
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There are several ways to give the matching weights, and in
the proposed method we set 1.0 to the class which has the
highest similarity and 0.0 to the rest of classes. The subject
is identified as a person c in case that the final similarity S°¢
is the highest one among all classes.

The above process allows us not to utilize similarities
extracted from areas with low matching weights, which are
due to speed change, but it allows to utilize similarities from
areas with high matching weights. Therefore, the proposed
method enables person identification robust to speed varia-
tions. Moreover, dividing the subject area into multiple areas
makes a dimensionality of an input image vector into MSM
smaller compared with that of the original image vector,
and this allows the evaluation of the covariance matrix with
higher accuracy.

2) The use of image vectors and gait features: As we
explained in Section 1, there is an alternative way to make
the dimensionality of input vectors into MSM small, that is
the use of gait features extracted from images. There are
several techniques to extract gait feature from each image.
In this paper we focus on frieze pattern [12] and AMIs [7],
since these two techniques reported good performance. We
explain two methods briefly as follows.

Lee et al. proposed the frieze pattern [12], which has
two feature vectors defined as F P, (y,t) = > I(x,y,t),
and FPy(z,t) = > I(z,y,t). In this paper we used
FPy(y,t) only, since the use of F'P,(x,t) caused a decrease
in performance. Figure 1 (b) shows an example image of
feature vectors of frieze pattern.

Affine moment invariants [3] are moment-based descrip-
tors, which are invariant under a general affine transform.
The moments describe shape properties of an object as it
appears. There are totally 80 independent AMIs, which are
based on centralized moments ji,, of order (p + q), and one
of 80 AMIs is defined as I; = #%(ugouog — 3.

The process of gait recognitf(o)n using gait features is
basically the same with the one with image vectors as
follows. After images are divided into K areas, we extract K
feature vectors from each of gait images. Extracted feature
vectors from gait images at each area are used as input into
MSM, followed by calculation of matching weights in all
areas. Matching weights are calculated in the same way with
the ones in Section II-B.1. Finally the subject is identified
by weighted integration of similarities of all areas.

We did preliminary experiments on OU-ISIR Treadmill
Dataset A [13] to compare the performance between the
frieze pattern and AMIs. We did matching between gait
images of 2 km/h (gallery) and those of 2 ~ 7 km/h (every
1 km/h, probe). Table I shows correct classification ratios
of frieze pattern and AMIs, each of which is applied to
the proposed method. Parameters in the proposed method,
which are the number of divided areas K and dimen-
sionalities of subspaces of gallery and probe dataset, are
selected with datasets for parameter training as we explain
in experiments. These results show the frieze pattern is
better than AMIs. This could be because of the following
reason. From the definition of frieze pattern, we can say

TABLE 1

COMPARISON OF CORRECT CLASSIFICATION RATIO (CCR) [%] OF

FRIEZE PATTERN [12] AND AMIS [7], EACH OF WHICH IS USED AS
INPUT INTO MSM. THE SPEED OF GALLERY DATASET IS 2 KM/H, AND

THOSE OF PROBE DATASET IS EACH OF 2 ~ 7 KM/H.
Probe [km/h]

2 3 4 5 6 7
Frieze 100 | 100 | 100 | 100 | 100 | 92
pattern [12]
AMIs [7] 100 | 100 | 100 96 84 80

that each element of frieze pattern is correlated, since we
can assume that the human body shape is smooth. On the
other hand, each element of AMIs is independent. Intuitively,
in case that correlations among feature elements are strong,
feature vectors in each class can be represented with a lower
dimension subspace. This results in reducing the possibility
that subspaces among classes overlap each other, and this
may allow higher performance. Thus in the experiments, we
use the frieze pattern.

Since the frieze pattern represents shape properties, the use
of frieze pattern allows to incorporate shape properties into
the covariance matrix. On the other hand, as we explained
in Section 1, the use of image vectors does not incorporate
shape properties into the covariance matrix. We can expect
the use of both image vectors and gait features may lead
to higher performance than the use of each of them, since
these two have different properties. Thus in our method we
use both as input into MSM.

III. EXPERIMENTS

In this section, we implement the proposed method and
evaluate its performance on OU-ISIR Treadmill Dataset A
[13] and CASIA-C Dataset [1]. The OU-ISIR Treadmill
Dataset A was collected on a treadmill with speed variations
(from 2 km/h to 10 km/h, every 1 km/h). The CASIA-C
Dataset was collected at night using infrared cameras with
several conditions including standard, speed, and carrying
variations.

A. Gait recognition with the OU-ISIR Treadmill Dataset A

The OU-ISIR Treadmill Dataset A consists of gait images
for 34 people, and from the dataset specification, 25 subjects
and the rest of subjects are assigned for evaluation and
parameter training, respectively. In our method we have
parameters, i.e., the dimensionalities of subspaces of gallery
and probe dataset, and the number of divided areas K,
and these parameters are tuned with datasets for parameter
training.

This dataset consists of gait images with speed variations
(from 2 km/h to 10 km/h, every 1 km/h)) for each gallery
and probe dataset, and subjects walked for speeds between
2 km/h to 7 km/h and run for speeds between 8 km/h to 10
km/h. In this section we used images for speeds between
2 km/h to 7 km/h, and we did experimental evaluations
with all combinations of gallery and probe speeds, i.e. 36
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Fig. 2. Correct classification ratio with respect to changes of the number
of divided areas K. We did matching between 2 km/h (gallery) and each
of 2, 5, and 7 km/h (probe).

combinations (6 different speed for each gallery dataset” x
76 different speed for each probe dataset”).

In the first experiments, we changed the parameter K to
see the performance changes with respect to the change of
K. We did matching between 2 km/h (gallery) and each of
2, 5, and 7 km/h (probe). We used image vectors as input
into MSM, and parameters of gallery and input subspaces are
tuned at each K. Figure 2 shows correct classification ratio
(CCR) with K=1~ 12. Here, the result of K=1 is equal to
the result of the MSM-based method [9]. From these results,
we can see that the proposed method which uses divided
areas is better than the MSM-based method [9], in case that
we choose proper parameters.

Table II show results of cross-speed walking people identi-
fication by the proposed method with image vectors, the pro-
posed method with frieze pattern, and the proposed method
with image vectors and frieze pattern. The use of both
image vectors and frieze pattern show the best performance
compared with the one of either image vector or frieze
pattern. Here, parameters of gallery and input subspaces and
the number of divided areas K are tuned simultaneously.
Please note that some of results in Table II are different from
those in Table I, since the way how parameters are tuned is
different.

Moreover, we compared results with the RSM-based
method [4], which showed the best performance with the
dataset, and results of [4] are shown in Table III. Our method
shows better performance than those of [4]. Table IV lists
the average classification ratios of the MSM-based method
[9] (96.78 %), our proposed method (image vector, 97.89 %),
our proposed method (frieze pattern, 98.78 %), our proposed
method (image vector and frieze pattern, 99.78 %), and the
RSM-based method [4] (98.07 %). These results show the
effectiveness of the proposed method with image vector and
frieze pattern.

B. Evaluation of effectiveness of the matching weights

To evaluate the effectiveness of the matching weights wy,
in Eq. 2, which are set as 1.0 to the class with highest
similarity and as 0.0 to the rest of classes, we first checked
the performance at each area of K divided areas. Here, we
used K=1~3 as examples. Correct classification ratio for
each area between 2 km/h (gallery) and each of 2 ~ 7

km/h (probe) is shown in Table V. These results supports
the idea, which we mentioned in Section 1, that static
areas have higher discrimination capabilities than dynamic
areas. Interestingly, even though speeds of probe and gallery
datasets are the same (i.e. 2 km/h for both probe and gallery),
the area ”3-3” has lower discrimination capability (28 [%]).

We checked a weight assigned to each area and Fig. 3
shows examples of assigned weights between gallery ID 28"
and probe ID ”28” (K= 2 and 3). From these results, we can
see that higher weight (1.0) and lower weight (0.0) are set to
static and dynamic areas, respectively. We confirmed that the
proposed method successfully assigns high weights to areas
which have higher discrimination capabilities.

We also did cross speed walking gait recognition with
wj,=1.0 for all classes (i.e. simple summation of similarities
of all areas). Figure 4 shows results of matching between
2 km/h (gallery) and each of 2 ~ 7 km/h (probe) by (a)
proposed matching weights and (b) equal matching weights.
Here, we used image vectors and frieze pattern as input into
MSM. These results show that the use of proposed matching
weights improve the performance of gait recognition.

C. Gait recognition with the CASIA-C Dataset

In the last experiments we evaluated the proposed method
(image vectors and frieze pattern) on the CASIA-C Dataset,
which consists of 153 subjects with 3 different walking
speeds and a carrying condition. Since this paper focuses
on walking speed condition, we apply the proposed method
to datasets of different walking speeds. Three walking con-
ditions contain normal walking (fn), slow walking (fs), and
fast walking (fq). For each subject, there are 4 sequences of
fn, 2 sequences of fs, and 2 sequences of fq. We used 3
normal walking (fn) sequences as the gallery set, and the
rest sequences were used as the probe set.

Table VI shows the results of the proposed method, the
RSM-based method [4], the DLT-based method [19], and
AEI [20] for each of fn, fs, and fq. These results show the
effectiveness of the proposed method.

IV. CONCLUSIONS

This paper described a method, which expanded the previ-
ous MSM-based method [9], to recognize people more robust

Correct classification ratio [%]
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84 - % - (b) Equal weights
82
80
2 3 4 5 6 7

Probe [km/h]

Fig. 4. Correct classification ratio between 2 km/h (gallery) and each of
2 ~ 7 km/h (probe), with (a) proposed matching weights and (b) equal
matching weights wi=1.0.
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Fig. 3. Examples of weights assigned to areas of K (=2 and 3) divided areas. These results show weights between gallery ID 28" and probe ID 28,
and numbers next to pictures show assigned weight.
TABLE 11
CORRECT CLASSIFICATION RATIO OF THE PROPOSED METHOD WITH (I) IMAGE VECTOR, (II) FRIEZE PATTERN, AND (III) IMAGE VECTOR AND FRIEZE
PATTERN IN THE CROSS-SPEED WALKING GAIT RECOGNITION. RESULTS ARE SHOWN AS (1, 1, III).
Probe 2 kmvh 3 km/h 4 km/h 5 km/h 6 knvh 7 knvh
Gallery
2 km/h (100, 100, 100) | (100, 100, 100) | (100, 100, 100) (96, 100, 100) (96, 100, 100) (92, 88, 92)
3 km/h (100, 100, 100) | (100, 100, 100) (96, 100, 100) (100, 100, 100) | (100, 100, 100) (92, 96, 100)
4 km/h (100, 100, 100) | (100, 100, 100) | (100, 100, 100) (96, 100, 100) (96, 100, 100) (96, 96, 100)
5 km/h (100, 100, 100) | (100, 100, 100) | (100, 100, 100) | (100, 100, 100) | (100, 100, 100) (96, 100, 100)
6 km/h (100, 100, 100) | (100, 100, 100) | (100, 100, 100) | (100, 100, 100) | (100, 100, 100) | (100, 100, 100)
7 km/h (88, 84, 100) (92, 92, 100) (88, 100, 100) (96, 100, 100) (100, 100, 100) | (100, 100, 100)
TABLE III
CORRECT CLASSIFICATION RATIO OF THE RSM-BASED METHOD [4] IN THE CROSS-SPEED WALKING GAIT RECOGNITION.
Probe 115 kmm 3 km/h 4 km/h 5 km/h 6 km/h 7 km/h
Gallery
2 km/h 100£0.00 100£0.00 100+0.00 | 97.6+2.07 | 97.6£2.80 9442.83
3 km/h 100£0.00 100£0.00 100£0.00 100£0.00 100£0.00 | 98.44+2.07
4 km/h 100£0.00 100£0.00 100£0.00 100£0.00 100£0.00 | 90.442.80
5 km/h 92.8+£1.69 | 96.4+1.26 | 10040.00 100+0.00 100+0.00 9640.00
6 km/h 9240.00 94.44+2.07 | 100£0.00 100+0.00 100+0.00 100+0.00
7 km/h 9240.00 944+2.11 94.841.93 | 10040.00 100+0.00 100+0.00
TABLE IV

COMPARISON OF AVERAGE CORRECT CLASSIFICATION RATIO (CCR) [%] OF EACH MSM-BASED GAIT RECOGNITION [9], OUR PROPOSED METHOD
(IMAGE VECTOR), OUR PROPOSED METHOD (FRIEZE PATTERN), OUR PROPOSED METHOD (IMAGE VECTOR AND FRIEZE PATTERN), AND RSM-BASED

GAIT RECOGNITION [4] ON OU-ISIR TREADMILL DATASET A [13].

MSM-based gait
recognition [9]

Our proposed method
(image vector)

Our proposed method
(frieze pattern)

Our proposed method
(image vector and frieze pattern)

RSM-based gait
recognition [4]

96.78

97.89

98.78

99.78

98.07

CCR (%]

to speed variations than the previous method. In the proposed
method, the human body area in each image was divided into
multiple areas, and MSM [9] was applied to each area. A
matching weight at each area was calculated automatically,
and areas which had higher discrimination capabilities were
adaptively selected based on the calculated weights. Then the
subject was identified by weighted integration of similarities

of all areas. The proposed method has an advantage that
it can adaptively choose areas that have high discrimination
capability. Moreover, in the proposed method we utilized the
frieze pattern as an input into MSM. The use of divided areas
and the frieze pattern allowed us to evaluate the covariance
matrix in MSM with higher accuracy, which resulted in
higher performance in gait recognition. We carried out exper-




TABLE V
CORRECT CLASSIFICATION RATIO AT EACH AREA OF K DIVIDED AREAS (K =1 ~ 3). THE SPEED OF GALLERY DATASET IS 2 KM/H, AND THOSE OF

PROBE DATASET ARE 2 ~ 7 KM/H. THESE RESULTS SHOW THAT STATIC AREAS HAVE HIGHER DISCRIMINATION CAPABILITIES THAN DYNAMIC AREAS.

BOLD NUMBERS SHOW RELATIVELY HIGH PERFORMANCE.

The number of Area 2km/h | 3km/h | 4 km/h | 5km/h | 6 km/h | 7 km/h

divided areas (K)

1 n 1-1 100 9 9 72 72 60
21 21 100 88 100 96 88 84

2
)22 22 || 7 72 40 28 4 8
i 3.1 9 92 88 88 76 84

3 ¥ 32 60 68 44 16 20 12
33 3.3 28 2 4 12 4 4

TABLE VI

COMPARISON OF AVERAGE CORRECT CLASSIFICATION RATIO (CCR) [%] OF EACH OF THE PROPOSED METHOD (IMAGE VECTOR AND FRIEZE
PATTERN), RSM-BASED GAIT RECOGNITION [4], DLT-BASED GAIT RECOGNITION [19], AND AEI [20] oN CASIA-C [1]

Our proposed method RSM-based gait | DLT-based gait | AEI [20]
(image vector and frieze pattern) recognition [4] recognition [19]
fn 100 100 95.4 89
fs 99.7 99.740.24 91.2 89
faq 99.7 99.64+0.14 92.5 90

iments with two gait databases, and showed the robustness of
the proposed method compared with conventional methods
against speed changes.

In this paper the proposed method was evaluated with
datasets of speed changes, but theoretically the method can
work with datasets of different variations such as clothes
changes. This is left as a future study.
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