
Detecting Repeated Motion Patterns

via Dynamic Programming using Motion Density

Koichi Ogawara and Yasufumi Tanabe and Ryo Kurazume and Tsutomu Hasegawa

Abstract—In this paper, we propose a method that detects
repeated motion patterns in a long motion sequence efficiently.
Repeated motion patterns are the structured information that
can be obtained without knowledge of the context of motions.
They can be used as a seed to find causal relationships between
motions or to obtain contextual information of human activity,
which is useful for intelligent systems that support human
activity in everyday environment.

The major contribution of the proposed method is two-fold:
(1) motion density is proposed as a repeatability measure and
(2) the problem of finding consecutive time frames with large
motion density is formulated as a combinatorial optimization
problem which is solved via Dynamic Programming (DP) in
polynomial time O(N log N) where N is the total amount
of data. The proposed method was evaluated by detecting
repeated interactions between objects in everyday manipulation
tasks and outperformed the previous method in terms of both
detectability and computational time.

I. INTRODUCTION

Supporting daily life is one of the upcoming key applica-

tions of robotics technology and the capability to understand

human activity is essential for this purpose. One of the com-

mon approaches to understand human activity is to design

a set of necessary and sufficient task-dependent recognizers

that detect significant actions as well as capture the necessary

parameters to describe the action [1], [2], [3]. However, the

variety of human activity in everyday environment is very

diverse as opposed to those in a well-designed environment

such as a factory, it is not practical to prepare recognizers to

cover all of them.

For this reason, a desirable system should have a mecha-

nism to learn new knowledge, new recognizers, from obser-

vation incrementally. As a bootstrap process to realize this

mechanism, we are trying to detect repeated motion patterns

as a structured information in observation data that can be

extracted without knowledge of the context of a task. The

basic idea is if a particular motion pattern appears many

times in observation data, this pattern must be meaningful

to the user or to the task. When a system detects repeated

motion patterns while observing daily activity for a long

period of time, e.g. several days, these patterns can be

considered as meaningful actions and the causal relationships

between these actions can be used to predict the next action

of a user or to learn contextual information of human activity,

K. Ogawara is with Faculty of Engineering, Kyushu University, Fukuoka,
JAPAN ogawara@is.kyushu-u.ac.jp
Y. Tanabe is with Department of Electrical Engineering and Computer

Science, Kyushu University, Fukuoka, JAPAN
R. Kurazume and T. Hasegawa are with Faculty of Information Science

and Electrical Engineering, Kyushu University, Fukuoka, JAPAN

which is useful for intelligent systems that support human

activity in everyday environment.

In this paper, we propose a method that detects previously

unknown repeated motion patterns in a long motion sequence

efficiently. The contribution of the proposed method is two-

fold. The first contribution is to introduce a notion of

motion density as a repeatability measure which evaluates the

number of similar motions for each time frame. The second

contribution is that the problem of finding variable-length re-

peated motion patterns, that is consecutive time frames with

large motion density, is formulated as a combinatorial opti-

mization problem which is solved via Dynamic Programming

(DP) in polynomial time O(N log N) in average where N is
the total amount of data, while most of the previous methods

assume known-length patterns [4] or take O(N2) time [5].
Among few exceptions is [6] which takes O(N1+1/α) time,
however it solves the problem in three-steps. On the other

hand, the proposed method finds repeated motion patterns

under a single energy minimization framework.

The remainder of this paper is organized as follows. In

Section II, we give an overview of the related research.

Then we introduce a notion of motion density in Section

III and extend the framework to cover interrelated multiple

time series data for our particular application in Section IV.

The details of the proposed method is explained in Section

V. The experimental results are presented in Section VI and

we conclude the paper in Section VII.

II. RELATED WORK

T

Trajectory

Fig. 1. Repeated Patterns in a Time Series Data

While there has been a large body of work regarding

efficiently locating previously known patterns in time series

data [7], [8], [9], we focus on locating previously unknown

repeated patterns in this study as shown in Fig. 1. Finding

unknown repeated patterns, or motifs, has been a well-known

task in the bioinformatics community [10], in the data mining

community [4], [11] and in the motion analysis community

[12], [5], [6].

Finding repeated patterns has been studied extensively in

analysis of nucleic acid sequences decades ago where the

time series data is a sequence of discrete symbols from

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 1743

a set of 4 bases. Staden proposed a method that detects

the most repeated known-length pattern by a voting scheme

considering all the possible combination of patterns [10]. The

computational time is linearly proportional to N , where N
is the total amount of data.

The continuous counterpart has received much attention in

the data mining community as well as in the motion analysis

community. In the early stages, Liu et al. proposed a method

in that a continuous time series data is first discretized into

a sequence of symbols and the most repeated known-length

pattern is found probabilistically by a voting scheme using

a hash function in O(N) time [4].
To deal with unknown-length repeated patterns, several

approaches based on Dynamic Programming (DP) have been

proposed. Ogawara et al. proposed a method that detects a set

of motion patterns appeared in all M observation data in the

same order using multi-dimensional DP matching in O(NM)
time [13]. Uchida et al. proposed a method that detects pair-

wise similar motion patterns from a single observation data

using logical DP matching in O(N2) time [5].
To reduce computational time, Yankov et al. proposed a

method that extends [4] to deal with uniform scaling of

the known-length repeated motion patterns in O(N1+1/a)
time [11]. To find totally unknown-length repeated motion

patterns, Meng et al. proposed a three-steps method in

O(N1+1/a) time in that it finds k-nearest-neighbor data
points using Locality Sensitive Hashing (LSH), then it con-

nects these detected data points along time axis to find

repeated motion candidates and finally it performs spectral

clustering to find the repeated motion patterns [6]. However,

the output from each step cannot be guaranteed to be the

global optimum.

In contrast to Meng’s method, the proposed method finds

repeated motion patterns from a continuous time series

data under a single energy minimization framework in

O(N log N) time, thus it finds the global optimum in terms
of the given energy function. Another advantage is that it can

detect consistent repeated motion patterns among interrelated

multiple continuous time series data which is not possible

with other methods.

Ogawara et al. previously proposed a method that finds

consistent repeated motion patterns among interrelated mul-

tiple continuous time series data in O(N log N) time [14].
However, the problem is formulated as a combinatorial

optimization problem with two correlated parameters. These

two parameters are estimated alternately but independently,

thus the global optimum is not guaranteed to be obtained.

In the proposed method, the problem is re-formulated as a

combinatorial optimization problem with a single parameter

and the global optimum is analytically obtained via Dynamic

Programming (DP).

Finding repeated patterns can be seen as a data com-

pression problem where repeated patterns would be coded

with a shorter word. Zhao et al. proposed a method that

compresses a vector quantized motion data using Huffman

coding which minimizes both the amount of information to

code the entire data and the size of the dictionary under

Minimum Description Length (MDL) principle [12]. It works

well on ballet motion, however the result is severely affected

by non-repeated patterns which dominates a time series data

in general.

III. MOTION DENSITY

Fig. 1 shows an example of the problem of interest. Given

a long time series data of arbitrary dimensions, we want

to find unknown repeated patterns efficiently where minor

variation of shape and length is allowed.

Here, we introduce a notion of motion density as a

repeatability measure which evaluates the density of similar

motions at around each time frame. With that, the problem

is formulated as to find consecutive time frames with large

motion density under an energy minimization framework.

Motion density md(x, t) represents the density of similar
motion segments in the neighborhood of data point ox,t at

time t in time series data x. In this study, motion density
is defined as the number of motion segments found within

radius R around ox,t excluding the one to which ox,t belongs:

md(x, t) = #{msj |ox,t /∈ msj ,msj ⊂ ∪ox,k, |ox,k−ox,t| < R}
(1)

where motion segment msj is a continuous sequence of ox,k

without a gap. If motion density is high, that means there

are many repeated motion patterns similar to the one around

ox,t.

(1) Mo�on Density is high (2) Mo�on Density is low

(3) Mo�on Density is high

1,tx
o

Mo�on Segments

in the neighborhood

Mo�on Segment

of Interest

Pose Space

(4) Mo�on Density is low

Shape Space

2,tx
o

3,tx
o

3,tx
o

R

Fig. 2. Motion Density

Fig. 2 shows examples of motion density. The curve in Fig.

2 (1) to (3) represent the 2D slice of a time series data of

arbitrary dimensions in Pose Space. Here, we assume that the

time series data represents a trajectory, e.g. 6 D.O.F. position

of a rigid object or joint angles of a human body, and Pose

Space is the space where the time series data is directly

projected without conversion.

1744

1. Normaliza�on

T

2. Capturing Local Shape Informa�on

1

-1

t

DCT_WIDTH

3. Applying DCT of Gaussian
DCT_BANK

Dimensionality Reduc�on

in i-th parameter space

4. Applying PCA

Dimensionality Reduc�on

in the en�re parameter space

PCA_BANK

XCosine table

Dim. = 6

Dim. = DCT_WIDTH x 6

Dim. = DCT_BANK x 6

Dim. = PCA_BANK

T1

-1

Mo on Density in Shape Space

Mo on Density in Pose Space

Fig. 3. Conversion from Pose Space to Shape Space

In the case of Fig. 2 (1), there are several similar motion

segments in the neighborhood of ox,t1 , 2 in this case, thus the

motion density mdp(x, t1) is relatively high, On the other
hand, in the case of Fig. 2 (2), there is no other motion

segment in the neighborhood of ox,t2 , thus the motion density

mdp(x, t2) is low.

In the case of Fig. 2 (3), there are several motion segments

in the neighborhood of ox,t3 , thus mdp(x, t3) is high.
However, as shown in the figure, the shape of these motion

segments are completely different, thus these should not be

considered as repeated motion patterns.

To take the similarity of shape into consideration, another

space named Shape Space is defined. In this space, each data

point at time t encodes the local shape of the original time
series data at around ox,t so that data points similar in shape

locally are projected to be in the neighborhood.

Motion density is also computed in Shape Space and both

of the motion densities are used as a repeatability measure

at time t. Fig. 2 (4) shows the converted trajectory of Fig. 2
(3) into Shape Space and motion density mds(x, t3) is low
in this space.

A. Definition of Shape Space

In Shape Space, the metric between two data points is

computed as the similarity in shape between two motion

segments around the data points. The conversion from Pose

Space to Shape Space is made of 4 steps as shown in Fig.

3.

Here, we assume that the original time series data in Pose

Space represents a trajectory of an object and each data point

is made of 6 parameters, 3 for translation and 3 for rotation

(quaternion). However, the following conversion generalizes

to any parameterization including joint angles.

1. Building Kd-Tree

2. Finding data points in the neighborhood

3. Embedded segmenta�on algorithm in Kd-tree search

Table

Mo�on Segment

Link List
Start
End

Start
End

Start
End

R
tx

o ,

… …

tt-1

K-1 K+1K

K+1KK-1t-1 t
Tbl[i]

.Visit_count

.index

.p_MS

Fig. 4. Kd-tree with Embedded Segmentation Algorithm

1) Normalization

Because the range of values is totally different among

the parameters, translation v.s. rotation, the values are

normalized in each parameter space independently.

Motion density in Pose Space is computed from the

normalized data points.

2) Capturing Shape Information

To capture the local shape information, DCT WIDTH

normalized data points around time t are gathered to
form a shape vector in i-th parameter space. The num-
ber of dimension is increased from 6 to DCT WIDTH

× 6.
3) Applying DCT of Gaussian

Discrete Cosine Transform (DCT) of Gaussian is ap-

plied to the shape vectors for dimensionality reduction

in i-th parameter space. The number of dimension is
reduced to DCT BANK × 6.

4) Applying PCA

Principal Component Analysis (PCA) is applied to

the set of reduced shape vectors for dimensionality

reduction in the entire parameter space. The number

of dimension is further reduced to PCA BANK.

We can directly apply PCA to a shape vector without ap-

plying DCT of Gaussian. The reason why DCT of Gaussian

is applied intermediately is that PCA in high dimensional

space takes time. PCA after DCT of Gaussian dramatically

reduces the computational time, while the quality of dimen-

sionality reduction is comparable with PCA only approach.

From the viewpoint of computational complexity, the time

for applying PCA is considered to be a constant, but it makes

the algorithm considerably faster in practice.

B. Finding Motion Segments using Kd-tree

To count the number of motion segments within the hyper-

sphere of radius R around a data point, Kd-tree with an
embedded segmentation algorithm is used. The algorithm

works as shown in Fig. 4.

1745

1) Building Kd-tree

Two Kd-trees are built separately for the set of data

points both in Pose Space and in Shape Space. The data

points are recursively subdivided by a hyper-plane per-

pendicular to the axis along which the variance of the

remaining data points becomes maximum. The com-

putational time for building Kd-tree is O(N log N).
2) Finding Data Points in the Neighborhood

For each data point at time t, all the data points within
the hyper-sphere of radius R are searched. The average
computational time is close to O(log N), however it
becomes O(N) in the worst case if all the data points
lie within the hyper-sphere.

3) Embedded Segmentation Algorithm in Kd-tree

Search

After finding all the data points within the hyper-

sphere, these points have to be grouped into segments.

However, if segmentation is performed separately after

Kd-tree search finishes, additional time is required to

sort the data points whose computational time is ether

O(N) or O(K log K) where K is the number of the
data points found within the hyper-sphere.

Thus, a segmentation algorithm is embedded in the

search algorithm of Kd-tree without increasing com-

putational complexity. As shown in Fig. 4, it maintains

a table of length N each of which holds 3 parameters:
(1) visit count is used to check if it is already visited
of not, (2) index holds the table-index of another data
point that belongs to the same motion segment and

(3) p MS is a pointer to the corresponding Motion
Segment structure. It also maintains the linked-list of

Motion Segment structure each of which holds the start

and end time of the motion segment.

The flow of the algorithm is presented in TABLE I.

This algorithm is called with the time parameter t
whenever a new data point within radius R is found
during a single Kd-tree search. If the mean number

of data points around a data point is K̄, then this
is called K̄ × N times in total. For each call, the

set of Motion Segment structure is updated using one

of the following functions: mergeMotionSegment() is

to merge two consecutive segments together, enlarge-

MotionSegment() extends the range of the segment to

include time t and addNewMotionSegment() creates a
new segment at time t. visit count is incremented once
in each Kd-tree search, that is N times.
When all the data points within the hyper sphere are

visited, the data points are already grouped into motion

segments and motion density is calculated by just

counting the number of segments.

C. Consistency between Motion Densities

Since repeated motion patterns must appear in both motion

densities, a motion segment that is not shared by both of

the motion densities is removed. Using remaining motion

segments, motion density is calculated as eq.(1).

TABLE I

EMBEDDED SEGMENTATION ALGORITHM

1 Input: t;
2 idxl = idxr = t;
3 if tbl[t-1].visit count == visit count
4 idxl = t-1;
5 do (idxl = tbl[idxl].index)
6 while (idxl != tbl[idxl].index);
7 tbl[t-1].index = idxl;
8 end;
9 if tbl[t+1].visit count == visit count
10 idxr = t+1;
11 do (idxr = tbl[idxr].index)
12 while (idxr != tbl[idxr].index);
13 tbl[t+1].index = idxr;
14 end;
15 if idxl != t && idxr != t
16 mergeMotionSegment(tbl[idxl].p MS, tbl[idxr].p MS);
17 tbl[t].idx = idxl;
18 else if idxl != t
19 enlargeMotionSegment(tbl[idxl].p MS, t);
20 tbl[t].idx = idxl;
21 else if idxr != t
22 enlargeMotionSegment(tbl[idxr].p MS, t);
23 tbl[t].idx = idxr;
24 else
25 addNewMotionSegment(t);
26 tbl[t].idx = t;
27 end;
28 tbl[t].visit count = visit count;

IV. EXTENSION TO INTERRELATED MULTIPLE

CONTINUOUS TIME SERIES DATA

T

T

T

Object 1

Object 2

Object 3

T

Trajectory

Conflict

N N A N A CA C N N N NN N NAA C C NData Label

Fig. 5. Finding Consistent Repeated Motion Patterns

So far, we implicitly assume a single time series data.

Here, we extend our framework to cover interrelated multiple

continuous time series data. Fig. 5 shows an example of the

problem. The input is multiple trajectories of objects, 3 in

this case, and the algorithm is required to output the motion

patterns that appear many times in the input trajectories.

If the multiple trajectories are independent of each other,

then the algorithm has only to be applied to each trajectory

separately. However, if the trajectories are interrelated with

each other, the algorithm has to find the consistent repeated

motion patterns among the trajectories.

This is the case when repeated interactions between ob-

jects are of interest. In Fig. 5, there are 3 possible interactions

1746

between: (A) Obj.1 and Obj.2, (B) Obj.1 and Obj.3, (C)

Obj.2 and Obj.3. If two of them are detected at the same

time, this means a conflicting situation.

In the proposed method, we assume that there occurs a

single significant interaction at most at a certain moment.

This assumption is not necessarily true when there are 4 or

more objects, or a motion is composed of more than two

objects, but it is satisfied in most cases.

Then, the problem is formulated as a combinatorial opti-

mization problem in that a data label x ∈ {A,B,C,Non}
is assigned to each time frame as shown in the bottom of

Fig. 5. ′′A′′, “B′′, “C ′′ mean there occurs a repeated motion

between the respective object pairs, while ′′Non′′ means

there is non-repeated motion at that time.

Please note that this formulation is a natural extension

from the single time series data case in that we have only

two labels: repeated and not-repeated.

V. ALGORITHM DETAILS

A. Problem Formulation

The problem is formulated as a combinatorial opti-

mization problem regarding data labels X = {xt|xt ∈
{A,B, · · · , Non}, 1 ≤ t ≤ N} as shown in Fig. 5. There
are two types of data labels: ′′A′′, “B′′, · · · mean the current
data point is a repeated motion belonging to the time series

data of that label, while ′′Non′′ means the current data point

is non-repeated motion.

In the case of finding consistent interactions between

objects, there are M = m(m − 1)/2 data labels where m
is the number of objects in the scene and data point oi,t

represents relative position between i-th object pairs at time
t.
Given multiple time series data TS = {oi,t|1 ≤ i ≤

M, 1 ≤ t ≤ N}, we find X that minimizes an energy

function defined as

E(TS,X) = Ev(TS,X) + Em(TS,X) + Es(X) (2)

Ev(TS,X) is a term regarding velocityi,t, that is the
velocity of the relative position between i-th object pairs at
time t, and it penalizes stationary or non-interacted objects.
In our particular application, objects stay still in most of

the period in a time series data, thus we have to avoid the

case where huge number of motionless regions are detected

as repeated motion patterns. Otherwise, this term is not

necessary. It is decomposed into

Ev(TS,X) =
∑

t

ev(TS, xt, t)

ev(TS, xt, t) = − log(1 − exp (−
velocityxt,t

< velocityxt,t
>

))

where < velocityxt,t
> is the mean value of velocityxt,t

.

Em(TS,X) is a term regarding motion density and it
penalizes data points with small number of similar motion

segments in the neighborhood. It is decomposed into

Em(TS,X) =
∑

t

em(TS, xt, t)

em(TS, xt, t) = − log(1 − exp(−
mdp(xt, t)

< mdp(xt, t) >
))

− log(1 − exp(−
mds(xt, t)

< mds(xt, t) >
))

where mdp(xt, t) and mds(xt, t) are the motion densities
defined in Pose Space and Shape Space. < mdp(xt, t) >
and < mds(xt, t) > are the mean values of mdp(xt, t) and
mds(xt, t) respectively.

Es(X) is a term regarding the prior distribution of X .
It penalizes the difference between consecutive data labels

which leads to reject short motion segments. It is decom-

posed into

Es(X) =
∑

t

es(xt, xt+1)

e(xt, xt+1) = T (xt 6= xt+1) · K,

where K is a constant and T (s) = 1 iff s =
true, otherwise T (s) = 0.

B. Energy Minimization via Dynamic Programming

A A

B

),(1+tts
xxe),(),(

tmtv
xTSexTSe +

N N N N A CN C N N N NN N NAA A A BData Label

Object 1 Object 2

Object 1 Object 3

Non

Find the shortest PATH

N means “Non”

Fig. 6. Estimation of Data Labels via Dynamic Programming

All the terms in eq.(2) satisfies first order Markov property,

the energy minimization problem can be analytically solved

by Dynamic Programming as shown in Fig. 6.

The trouble is we know nothing about the energy terms Ev

and Em regarding data label
′′Non′′. In general, the lower

these energy terms are, the fewer the number of detected

repeated motion patterns be. However, it is not clear how

these terms are determined, since the appropriate value is

context dependent. So we decided to adaptively change the

values of these terms so as to output the desired number of

motion patterns which is provided by a user.

First, the range of the value ev(TS, xt, t) + em(TS, xt, t)
is calculated by checking all the combination of t and xt.

Then, assuming eNon,t = ev(TS,Non, t)+em(TS,Non, t)
is a fixed value independent of t, the optimal eNon,t within

the range is obtained in binary-search fashion so as to best

outputs the desired number of repeated motion patterns via

Dynamic Programming.

1747

C. Separation of Motion Patterns on a Same Time Series

Data

So far, different motion patterns on a same time series data

are labelled as the same. To separate these motion patterns,

the following algorithm is applied.

A A A AA A

AA A A A
A

A

A

A

A

1ms

2ms

3ms

A A A AA A

AA A A A
A

A

A

A

A

1ms

2ms

3ms

Nearest data point within radius R

(1) Overlap Ra!o from to (2) Overlap Ra!o from to1ms 2ms 2ms 1ms

radius R

radius R

Fig. 7. Separation of motion patterns using mutual overlap ratio

Suppose one of the trajectory is labelled as in Fig. 7 and

3 motion segments are detected via DP. Then, for each pair

of motion segments msi and msj , the overlap ratio ORi,j is

calculated as the number of nearest data points within radius

R in msj divided by the length of msi. If mutual overlap

ratio, both ORi,j and ORj,i, is greater than 0.5, two motion

segments are grouped as the same motion pattern.

In the case of Fig. 7, OR1,2 = 4

5
and OR2,1 = 4

6
, thus

ms1 and ms2 are grouped as the same.

The nearest data point on each motion segment within

radius R is computed during Kd-tree search, thus there is no
increase in computational complexity.

D. Computational Complexity

The required computational time is O(N log N) for build-
ing Kd-tree, O(N log N) in average for motion density esti-
mation and O(M2N) for DP analysis. By assuming M <<
N , the total average computational time is O(N log N).

VI. EXPERIMENTAL RESULT

A. Experimental Setup

4 different manipulation tasks were performed by a subject

and were used to evaluate the proposed method. There

were 4 objects in the scene and an electromagnetic motion

tracking system (Polhemus FASTRAK) was used to observe

the trajectory of each object at 30Hz during demonstrations.

Fig. 8 shows the objects used in this experiment.

As shown in Fig. 9, 6 actions are defined. A subject

was instructed to perform a task following a scenario made

by combining 6 actions. To emulate the change in the

environment during long-term observation, the subject was

instructed to relocate the objects on the table several times

so that the relative relationship between stationary objects

was changed.

B. Evaluation

In all the experiments, we use 33 for DCT WIDTH, 4

for DCT BANK and 6 for PCA BANK so as to equalize

the dimensions of Pose Space and Shape Space. Both of the

radius of the hyper-sphere in Pose Space and in Shape Space

Obj.1
Obj.2

Obj.3 Obj.4

Fig. 8. Objects used in the Experiment

A1: Pour from Obj.1 to Obj.2 from the le�

A2 Pour from Obj.1 to Obj.2 from the right

B1: Pour from Obj.3 to Obj.2

C1: Mix inside Obj.2 with Obj.4

C2: Spoon up from Obj.1 with Obj.4

C3: Put into Obj.2 with Obj.4

A1 A2 B1 C1 C2 C3

Fig. 9. 6 Repeated Actions in the Scenario

is 0.4 and K in Es term is 15. These values were determined

empirically.

The proposed method was compared with the method

proposed in [14]. There are two noticeable differences be-

tween them. The first difference is that the desired number of

motion patterns is provided by a user in the proposed method,

while it is automatically selected in the previous method,

though it is highly sensitive to the parameters. The second

difference is that motion patterns in a same time series data

can be discriminated in the proposed method, while it is not

possible in the previous method.

TableII, III, IV, V shows the results of detecting repeated

motion patterns using two different methods. All the com-

putations were done on Xeon 3.0GHz PC.

As an error measure, Precision and Recall are calculated

from True Positive (TP), False Positive (FP) and False

Negative (FN) as

Precision =
TP

TP+ FP
, Recall =

TP

TP+ FN
.

The proposed method outperformed the previous method

in all the scores. However, there is a noticeable failure in

TABLE V where the number of detected action C3 is zero.

This is because, in this scenario, C3 always follows just after

C2 and these two consecutive actions were detected as a

single action which were labelled as C2.

VII. CONCLUSION

This paper presents a method that detects repeated motion

patterns from a continuous time series data under a single

energy minimization framework in O(N log N) time where

1748

TABLE II

EVALUATION OF DATA SET 1 [896 FRAMES]

Action A1

Presented Number 4 TP FN FP Precision Recall Time[msec]

Proposed Method 4 4 0 0 1.00 1.00 1164

Previous Method [14] 4 4 0 0 1.00 1.00 15873

TABLE III

EVALUATION OF DATA SET 2 [1428 FRAMES]

Action A1 A2

Presented Number 3 3 TP FN FP Precision Recall Time[msec]

Proposed Method 3 3 6 0 0 1.00 1.00 2401

Previous Method [14] 5 5 1 2 0.71 0.83 80624

TABLE IV

EVALUATION OF DATA SET 3 [3737 FRAMES]

Action A1 B1 C1

Presented Number 6 7 6 TP FN FP Precision Recall Time[msec]

Proposed Method 5 7 6 18 1 0 1.00 0.95 14800

Previous Method [14] 0 6 2 8 11 0 1.00 0.42 1769685

TABLE V

EVALUATION OF DATA SET 4 [5177 FRAMES]

Action B1 C1 C2 C3

Presented Number 7 5 10 10 TP FN FP Precision Recall Time[msec]

Proposed Method 7 3 6 0 16 16 5 0.76 0.50 26703

Previous Method [14] 5 5 10 22 4 0.71 0.31 8388985

N is the total amount of data. The algorithm outputs top

L repeated motion patterns, where the desired number L is
provided by a user.

The problem is formulated as a combinatorial optimization

problem in that the data label with large motion density

is assigned to each time frame, which then be solved via

Dynamic Programming (DP) analytically.

The proposed method was evaluated by detecting repeated

interactions between objects in everyday manipulation tasks

and outperformed the previous method[14] in terms of both

detectability and computational time.

ACKNOWLEDGMENTS

This study was supported by Program for Improvement of

Research Environment for Young Researchers from Special

Coordination Funds for Promoting Science and Technology

(SCF) commissioned by the Ministry of Education, Culture,

Sports, Science and Technology (MEXT) of Japan.

REFERENCES

[1] K. Ikeuchi and T. Suehiro, “Toward an assembly plan from observation
part i: Task recognition with polyhedral objects,” IEEE Trans. Robotics
and Automation, vol. 10, no. 3, pp. 368–384, 1994.

[2] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching,” IEEE
Trans. Robotics and Automation, vol. 10, no. 6, pp. 799–822, 1994.

[3] K. Bernardin, K. Ogawara, K. Ikeuchi, and R. Dillmann, “A sensor
fusion approach for recognizing continuous human grasping sequences
using hidden markov models,” IEEE Transactions on Robotics, vol. 21,
no. 1, pp. 47–57, 2005.

[4] J. Lin, E. Keogh, S. Lonardi, and P. Patel, “Finding motifs in time
series,” in Proc. of the 2nd Workshop on Temporal Data Mining, 2002,
pp. 53–68.

[5] S. Uchida, A. Mori, R. Kurazume, R. Taniguchi, and T. Hasegawa,
“Logical dp matching for detecting similar subsequence,” in Proc. of
Asian Conference of Computer Vision, 2007.

[6] J. Meng, J. Yuan, M. Hans, and Y. Wu, “Mining motifs from human
motion,” in Proc. of EUROGRAPHICS’08, 2008.

[7] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search
in sequence databases,” in Proc. of 4th International Conference on
Foundations of Data Organization and Algorithms, 1993, pp. 69–84.

[8] C.-S. Perng, H. Wang, S. R. Zhang, and D. S. Parker, “Landmarks:
A new model for similarity-based pattern querying in time series
databases,” in 16th International Conference on Data Engineering
(ICDE’00), 2000, pp. 33–42.

[9] T. Mori, Y. Nejigane, M. Shimosaka, Y. Segawa, T. Harada, and
T. Sato, “Online recognition and segmentation for time-series motion
with hmm and conceptual relation of actions,” in Int. conf. on
Intelligent Robots and Systems, 2005, pp. 2569–2574.

[10] R. Staden, “Methods for discovering novel motifs in nucleic acid
sequences,” Computer Applications in the Biosciences, vol. 5, no. 5,
pp. 293–298, 1989.

[11] D. Yankov, E. Keogh, J. Medina, B. Chiu, and V. Zordan, “Detecting
time series motifs under uniform scaling,” in Proc. of the 13th ACM
KDD Intl. Conf. on Knowledge Discovery and Data Mining, 2007, pp.
844–853.

[12] T. Zhao, T. Wang, and H. Shum, “Learning a highly structured motion
model for 3d human tracking,” in Proc. of Asian Conference of
Computer Vision, 2002.

[13] K. Ogawara, J. Takamatsu, H. Kimura, and K. Ikeuchi, “Extraction
of essential interactinos through multiple observations of human
demonstrations,” IEEE Transactions on Industrial Electronics, vol. 50,
no. 4, pp. 667–675, 2003.

[14] K. Ogawara, Y. Tanabe, R. Kurazume, and T. Hasegawa, “Learning
meaningful interactions from repetitious motion patterns,” in IEEE/RSJ
2008 Int. Conf. on Intelligent Robots and Systems, 2008, pp. 3350–
3355.

1749

