2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

Person identification from human walking sequences using affine
moment invariants

Yumi Iwashita and Ryo Kurazume

Abstract— This paper proposes a new person identification
method using physiological and behavioral biometrics. Various
person recognition systems have been proposed so far, and
one of the recently introduced human characteristics for the
person identification is gait. Although the shape of one’s body
has not been considered much as a characteristic, it is closely
related to gait and it is difficult to disassociate them. So,
the proposed technique introduces a new hybrid biometric,
combining body shape (physiological) and gait (behavioral).
The new biometric is the full spatio-temporal volume carved
by a person who walks. In addition to this biometric, we
extract unique biometrics in individuals by the following way:
creating the average image from the spatio-temporal volume
and forming the new spatio-temporal volume from differential
images which are created by subtracting an average image from
original images. Affine moment invariants are derived from
these biometrics, and classified by a support vector machine.
We used the leave-one-out cross validation technique to estimate
the correct classification rate of 94 %.

I. INTRODUCTION

Person recognition systems have been used for a wide vari-
ety applications, such as secure access to buildings, computer
systems, automated teller machines (ATMs). For reliable per-
sonal recognition systems, biometrics have received growing
interest. These include physiological biometrics, related to
the shape of the body, the oldest of which are the fingerprints;
and the behavioral biometrics, related to the behavior of a
person, the first of which used was the signature. Several
biometric recognition systems are available in the market.
However, these systems need special equipment and require
interaction with or cooperation of the subject.

One of the recently introduced human characteristics that
are expected to overcome these limitations is gait [1] [10].
Gait is the peculiar way one walks and is a complex spatio-
temporal biometric. Gait recognition has the advantage of be-
ing unobtrusive because body-invasive sensing is not needed
to capture gait information. Moreover, gait recognition has
the extra advantage that it may be performed from a distance.

One of the other characteristics that has not been con-
sidered much is the shape of one’s body. This is probably
because the shape of the body changes with time and with
clothing. However, it is difficult to disassociate body shape
from gait. So, this paper introduces a new hybrid biometric,
combining body shape (physiological) and gait (behavioral).
When a person walks, she/he carves a specific volume in the
spatio-temporal domain. It is the shape of this volume we
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wish to consider as a biometric. In addition to this biometric,
we consider another biometric, that is, the average image
obtained from the spatio-temporal volume. Moreover, for
emphasizing the difference of features in individuals, we
form a new spatio-temporal volume from new differential
images which are created by subtracting an average image
from original images. In this paper we propose a novel
person identification method which utilizes the full spatio-
temporal volume, its average image, and the new spatio-
temporal volume.

This paper is organized as follows. Section 2 is a brief
literature survey on the identification of individuals using
gait. Research that considers the spatio-temporal shapes
created by a walking person is reviewed in section 2.2.
However none of these papers considers the full volumes
as potential biometrics. Section 3 describes the methodology
we shall use in this paper. Section 4 describes the data we
shall use and the experiments performed. Our results and
conclusions are presented in section 5.

II. LITERATURE SURVEY ON GAIT AS A BIOMETRIC

For person identification from their gait, several ap-
proaches have been proposed. They may be mostly clas-
sified into two classes, model-based and appearance-based
approaches.

A. Model-based approaches

A model-based approach recovers explicit features de-
scribing gait dynamics, such as stride dimensions and the
kinematics of joint angles. Bouchrika and Nixon [11] de-
scribed spatial model templates for human gait in a parame-
terized form using Fourier descriptors. The positions of the
joints of walking people were extracted by using the Hough
Transform.

Cunado et al. [2] extracted the motion of the thigh, and
defined their gait signature by Fourier analysis. Yam et al. [3]
extended the system [2] to handle walking as well as running
people. They extracted the motion of the hip, the thigh,
and the lower leg by temporal template matching. Phase-
weighted Fourier description gait signatures were derived
from the extracted movements.

Urtasun and Fua [12] introduced a model composed of
implicit surfaces attached to an articulated skeleton. The
motion of people was tracked by using the 3D model and
clusters of 3D points captured by a stereo camera. By
using the 3D model, they increased the robustness to a
changing view direction. Lee and Grimson [13] introduced
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gait representation based on moments extracted from orthog-
onal view video silhouettes. Their gait appearance feature
vector comprised parameters of moment features of image
regions. Seven ellipses were fitted to different parts of the
binarized silhouette of the person and the parameters of these
ellipses, such as location of their centroids, eccentricities,
etc., were used as features to represent the gait of the
person. BenAbdelkader et al. [14] used stride and cadence
for the identification of people. The person’s identity was
defined based on parametric Bayesian classification of the
cadence and stride feature vector. From their experiments,
the variation in stride length with cadence was found to be
linear and unique for different people.

B. Appearance-based approaches

Appearance-based approaches directly extract parameters
from images without assuming a model of the human body
and its motion. This approach characterizes body movement
by the statistics of the spatio-temporal (XYT) patterns gen-
erated in the image sequences by the walking person. Here,
the XYT patterns are formed by piling up frames in an
image sequence as shown in Fig.1. There are many ways
of extracting XYT patterns from the image sequences of a
walking person.

(a) XYT image sequence volume

(b) Braided pattern in the XT-slice
taken at the ankle

Fig. 1. XYT image sequence volume.

The simplest approach is to use the sequence of binary
silhouettes spanning one gait cycle and scaled to a certain
uniform size [4]. Murase and Sakai [4] proposed a template
matching method in the parametric eigenspace that was
created from images. Sarker et al. [5] proposed a baseline
algorithm of gait recognition, which estimated the silhouettes
by background subtraction and performed recognition by
spatio-temporal correlation of silhouettes. Collins et al. [15]
used silhouettes corresponding to certain gait poses only. Liu
et al. [16] adopted dynamics-normalized shape cues with
a population HMM which emphasize difference in stance
shapes between subjects and suppresses differences for the
same subject under different conditions.

Other methods use a signature of the silhouette by col-
lapsing the XYT data into a more terse 1D or 2D signal,
such as vertical projection histograms (XT), and horizontal
projection histograms (YT) [17]. Niyogi and Adelson [17]
extracted XT sheets that encoded the person’s inner and outer

bounding contours detected by fitting ‘snakes’. Similarly, Liu
et al. [18] extracted the XT and YT projections of the binary
silhouettes. They used a frieze pattern to represent gait mo-
tion, that is a pattern created by summing up the white pixels
of a binarized image of a gait along the rows and columns
of an image. BenAbdelkader et al. [19] characterized gait in
terms of a 2D signature computed directly from the sequence
of silhouettes. The signature consisted of self-similarity plots
(SSP), defined as the correlation of all pairs of images in the
sequence. Han et al. used the gait energy image (GEI) which
is based on the average image [6].

Little and Boyd [7] used optical flow instead of binary
silhouettes. They fitted an ellipse to the dense optical flow
of the person’s motion, then computed thirteen scalar features
consisting of first- and second-order moments of this ellipse.
Twelve measurements were provided from thirteen features.

III. METHODOLOGY

In this section, we describe the methodology we use in
this paper. Here, we assume that a target region in an image
sequence is extracted.

A. Biometrics from human walking sequences

In the proposed method, we consider three biometrics, that
is, the full spatio-temporal volume carved by a person who
walks, the average image from the spatio-temporal volume,
and the new spatio-temporal volume which is created by the
average image and original images. The above biometrics are
explained in details. Firstly, Fig. 1 (a) shows the 3D volume
in the spatio-temporal (XYT) domain, and it is formed by
piling up the target region in the image sequences of one gait
cycle, which is used to partition the sequences for the 3D
volume. One gait cycle is a fundamental unit to describe the
gait during ambulation, which occurs from the time when
the heel of one foot strikes the ground to the time at which
the same foot contacts the ground again. In this paper, we
assume that the 3D volume consists of a number of small
voxels.

Next, the average image I°V¢"*9¢(x,y) is defined as
follows:

1 &
L7 @) = 7 3 Ly, (0
t=1
where T is the number of frames in one gait cycle and
I(x,y,t) represents the density of the voxels at time ¢.

Finally, for emphasizing the difference of features in
individuals, we create new images by subtracting the average
image from the original images, and then the new spatio-
temporal volume is formed. Here, the average image [*V¢"%9¢
is defined as follows:
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where NV is the number of subjects. New images I (x, y, t)
are given by

Iinew(x7yvt) = ma’x(ov Ii(x7y7t) - Iaver(lge(xvy)). (3)
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Figure2 (a) shows the average image, and Fig.2 (b) shows an
example of the differential images. For characterizing these
2D average images and 3D volumes, we consider the 2D and
3D affine moment invariants as features.

(a) An average image

(b) An example
anew image

Fig. 2. An average image and an example of differential images.

B. 2D and 3D affine moment invariants

In this section, we introduce the 2D and 3D affine
moment invariants. Affine moment invariants are moment-
based descriptors, which are invariant under a general affine
transform. The moments describe shape properties of an
object as it appears.

For an image I(z,y) the 2D moment of order (p + ¢q) of
an object O is given by

Ipg = / / aPytl(z,y)dudy. )
JJ(2,y)€0
The discrete version of Eq.4 is written as
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The center of gravity of an object in the image can be
determined from the zeroth and the first-order moments by

H1o Ho1
B2y, =B (©)
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Centralized moments are computed by using the coordinates
gy and y,:
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Six affine moment invariants are listed below [8].
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For a 3D space in which I(x,y,t) represents the density
of the voxels, the 3D moment of order (p + g + r) of a 3D
object O is given by the same procedure with 2D centralized
moments.

Hpgr = ZZZ(;,;,y,t)eO

(z — xg)p(?/ - yg)q(t - tg)rl(x; y,t),
)

where x4, y, and t, are the coordinates of the center of
gravity of an object in the 3D space.

Six 3D affine moment invariants are given in [9] [20], and
two of them are listed below. For the rest of them, refer to
[20] because of their long formulae.

1
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In the proposed method, we extract 2D affine moment
invariants from the average image and 3D affine moment
invariants from the full spatio-temporal volume of each sub-
ject at first, and the classifier is trained by using the training
data sets. Then in the identification phase, the same affine
moment invariants are extracted from the spatio-temporal
volume and its average image, and the subject is identified
by the classifier.

IV. EXPERIMENTS

In this section we describe the experiments. In our exper-
iments, we used a gait database collected by the University
of Southampton [21]. The database contains 140 raw image
sequences and foreground masks, which contains 140 video
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sequences, which contain 20 different subjects with 7 se-
quences for every subject. Figure 3 shows an example entry
from the database.

Moreover, we describe the extended method with the aim
of obtaining detailed features of the spatio-temporal volume.
This method makes explicit the movement and shape of the
arms from those of the legs, since different people move their
arms differently when they walk. To extract these features,
we divide the spatio-temporal volume into upper and lower
volumes.

A. Experiments with the spatio-temporal volume and the
average image

We carried out four experiments, and the experimental
conditions are as follows: (Exp. A) the binarized spatio-
temporal volume, (Exp. B) the average image from the
spatio-temporal volume, (Exp. C) the new spatio-temporal
volume created from the differential images, and (Exp. D)
the average image and the new spatio-temporal volume. In
our experiments, the support vector machine (SVM) and the
k-nearest neighbour classification were applied to the affine
moment invariants as the classifier. We used the leave-one-
out cross validation to estimate the classification error rate.

In the first experiment the 3D affine moment invariants are
used for the classification. Figure 4 shows the first two affine
moment invariants used for 10 out of the 20 subjects and
their whitened affine moment invariants. Here, data-specific
variation can be removed by whitening. The resultant correct
classification rate using the SVM and knn were 75 % and
69 %, respectively.

In the second experiment we used the 2D affine moment
invariants. Figure 2 (a) shows an example of the average
images. Here, the images are properly aligned and scaled to
a uniform height before calculating the average image. The
resultant correct classification rate using the SVM and knn
were 92 % and 89 %, respectively. From this experiment, we
could say that the average images show better performance
for each person than the binary spatio-temporal volumes.

In the next experiment we used the the 3D affine mo-
ment invariants of the new spatio-temporal volume, which
are created for emphasizing the difference of features in
individuals. The resultant correct classification rate using the
SVM and knn were 84 % and 79 %, respectively, which
was higher than the binary spatio-temporal volume. In the
final experiment, we used 2D affine moment invariants of
the average image and 3D affine moment invariants of the
new spatio-temporal volume. The resultant correct classifi-
cation rate using the SVM and knn were 94 % and 90 %,
respectively, which was the highest score in the series of the
experiments. Table I shows the correct classification rate of
our experiments.

Using the same database, Nixon et al. [11] used dynamic
and static gait features to yield a feature vector. Static
features include the body height, stride and heights of
different body parts while dynamic features are the phase-
weighted magnitudes of the Fourier frequencies for the hip
and knee angular motions. The gait signature is derived using

the adaptive forward floating search algorithm via selecting
the features with higher discriminability values. They used
the k-nearest neighbor rule as a classifier, and their system
achieved a correct classification rate of 92 % using the leave-
one-out cross validation rule. In their experiment they used
48 features for classification, on the other hand, we used
12 features. The comparison of their experiment and our
experiment is shown in Table II.

B. Experiments with the divided volumes

For obtaining detailed features of the spatio-temporal vol-
ume, we divide the 3D volume into upper and lower volumes
by threshold processing. We carried out four experiments,
and the experimental conditions are as follows: (Exp. E) two
volumes of the 3D binarized volume, (Exp. F) two volumes
of the new 3D volume from differential images, (Exp. G)
the 3D binarized volume and its divided volumes, and (Exp.
H) the new spatio-temporal volume and two volumes of the
3D binarized volume. In these experiments, the 3D volume
is divided into two volumes at two fifth from the bottom
as show in Fig. 5, and the k-nearest neighbour classification
was applied to the affine moment invariants as the classifier.
The resultant correct classification rates in (Exp. E ~ H)
were 87 %, 84 %, 92 %, and 93 %, respectively. From these
experiments, by dividing the full 3D volume into upper and
lower volumes, more detailed features could be obtained than
the full spatio-temporal volume.

Fig. 3.

Samples from the University of Southampton database. [21]

V. CONCLUSIONS

We proposed in this paper the person identification method
using the hybrid biometric of physiological and behavioral
biometrics, which is the full spatio-temporal volume carved
by a person who walks. In addition to this biometric, its
average image and new spatio-temporal volume, which was
created from the average image and original images, were
also considered as biometrics. We showed that affine mo-
ment invariants in conjunction with an SVM classifier may
produce marginally better results than those based on gait
analysis alone and k-nearest neighbour classification. More-
over, for obtaining detailed features of the sptaio-temporal
volume, we extended the proposed method by dividing the
3D volume into upper and lower volumes. The calculation
of the affine moment invariants is very straight forward,
unlike the individual cues extracted to characterize gait and
certain characteristics of the human body. In addition, the
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TABLE I
THE CORRECT CLASSIFICATION RATE OF OUR EXPERIMENTS

Biometrics The number of features | Correct classification rate [%]
SVM knn
(Exp.A) 3D volume of binarized images 6 75 69
(Exp.B) Average images 6 92 89
(Exp.C) 3D volume of differential images 6 84 79
(Exp.D) Average images and 12 94 90
3D volume of differential images

TABLE I
COMPARISON OF THE EXPERIMENT OF [11] AND OUR EXPERIMENT

The experiment of [11] Our experiment
Classifier The k-nearest neighbor rule The support vector machine
Features The gait signature 2D and 3D affine moment
consisting of 48 features invariants consisting of 12 features
Classification rate [%] 92 94

affine moment invariants, being integrators, are more robust
features than features based on differentiation.

One drawback may be that the spatio-temporal volumes
we consider may be affected by clothing, so their use in
unconstrained situations may not be robust. However, they
may be used in conjunction with sensors that can ‘“see
through” clothing. Moreover, another limitation is the shape
dependence on the viewing angle. To deal with this problem,
the classifier can be trained by using the training data sets
of different viewing angles. Finally, another drawback is that
by the extended method, although the number of features
is increased, it may ignore phase difference between the
movement of arms and that of legs. However, from the
experimental results, the proposed method is promising and
merits further investigation.
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Fig. 5. Upper and lower volumes.
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