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Abstract— In medical diagnostic imaging, an X-ray CT scan-
ner or a MRI system have been widely used to examine 3D
shapes or internal structures of living organisms or bones.
However, these apparatuses are generally very expensive and
of large size. A prior arrangement is also required before
an examination, and thus, it is not suitable for an urgent
fracture diagnosis in emergency treatment. This paper proposes
a method to estimate a patient-specific 3D shape of a femur from
only two fluoroscopic images using a parametric femoral model.
Firstly, we develop a parametric femoral model by statistical
analysis of a number of 3D femoral shapes created from CT
images of 51 patients. Then, the pose and shape parameters of
the parametric model are estimated from two 2D fluoroscopic
images using a distance map constructed by the Level Set
Method. Experiments using synthesized images and fluoroscopic
images of a phantom femur are successfully carried out and
the usefulness of the proposed method is verified.

I. INTRODUCTION

In medical diagnostic imaging, an X-ray CT (Computed
Tomography) scanner or a MRI (Magnetic Resonance Imag-
ing) system have been popular apparatuses to examine 3D
shapes or internal structures of living organisms or bones.
However, these apparatuses are generally very expensive and
of large size, and thus, they are usually installed in large
medical institutions rather than small clinics in town. A
prior arrangement is also required before an examination,
and thus, it is not suitable for an urgent fracture diagnosis
in emergency treatment.

On the other hand, X-ray/fluoroscopy has been widely
used as traditional medical diagnosis. Recently digital flu-
oroscopy has been developed and widely used in many
hospitals. The cost of this fluoroscopic inspection system
is much lower than CT or MRI systems and the system
can be dealt with more conveniently. Furthermore, the risk
of radiation exposure is also lower than the CT inspection
system.

From the above consideration, if it can realize to re-
construct precise 3D shapes of living organisms or bones
from few conventional 2D fluoroscopic images, it might
be very useful in practice in views of cost, labor, and
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radiation exposure. Especially, there is a strong demand from
surgeons that 3D computer aided surgery without laborious
CT imaging should be offered for some simple surgeries
such as artificial joint replacement or fracture treatment.
They have desired a 3D diagnostic system using favorite 2D
fluoroscopic images.

However, 3D shape reconstruction from a 2D image is a
fundamentally ill-posed problem, and thus a plenty of images
must be given or some constraint conditions for the 3D
shape must be determined. But the shapes of bones have
their inherent and universal patterns, and thus by modeling
such inherent patterns, 3D shape reconstruction from few 2D
images becomes possible.

This paper presents a method to estimate a patient-specific
3D shape of a femur from only two fluoroscopic images. This
technique utilizes a parametric femoral model constructed by
statistical analysis of a number of 3D femoral shapes created
from by CT images of 51 patients. Then, the pose and shape
parameters of the parametric model are estimated from two
2D fluoroscopic images using a distance map constructed by
the Level Set Method. Experiments using synthesized images
and fluoroscopic images of a phantom femur are successfully
carried out and the usefulness of the proposed method is
verified.

II. RELATED WORKS

2D/3D registration problem is well established in im-
age processing, especially for texture mapping in Com-
puter Graphics or Augmented Reality. For a rigid object,
1) feature-based technique [1],[2],[3], 2) image-based tech-
nique using 3D texture, reflectance, brightness, and shad-
ing [4],[5],[6], 3) silhouette-based technique [7],[8],[9],[10],
have been proposed so far. Especially in surgical naviga-
tion system, DRRs (Digitally Reconstructed Radiographs)
[22],[23] are widely used in 2D/3D registration for the
fluoroscopy-guided surgery.

On the other hand, in 2D/3D registration of a non-
rigid object such as soft tissues in medical imaging,
similarity measure [11], affine [12], geometric hashing
[13], quadric/superquadric [14], and displacement-field-
based transformation [15] have been proposed and tested. In
addition, the 3D shape estimation of a parameterized object
has also been studied such as the shape reconstruction of
mathematical plaster models with unknown parameters using
a laser range finder [16], or the comparison of multiple cross-
section images of a 3D model and a 3D parametric model
[17]. However, these studies assumes the use of a plenty of
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Features Region

VHc Point center of femoral head
AP Line principal axis of femur
AN Line femoral neck axis
PNc Surface cross section of neck center
VGt Surface apex of greater trochanter
VLt Point lesser trochanter
VLp Point iliofemoral ligament attachment
LR Curve ridgeline of greater trochanter
LV Curve valley of greater trochanter

TABLE I

LIST OF ANATOMICAL FEATURES OF FEMUR

(a) Front (b) Back
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Fig. 1. Anatomical features of femur

images or a precise 3D shape taken by a laser range finder,
and only a few studies of 3D non-rigid shape reconstruction
from only two or few 2D images have been proposed so far
[29],[27],[28].

III. 3D PARAMETRIC FEMORAL MODEL

A. Construction of parametric femoral model

We utilize a statistical shape model of a femur proposed
by Okada [18]. In this technique, a number of 3D femoral
shapes created from CT images is analyzed statistically, and
the parametric femoral model [19] which consists of an
average 3D shape and several shape parameters is created.
With this parametric femoral model, a general 3D shape of
a femur is expressed with the average shape and batch of
shape parameters.

The concrete procedure for creating a parametric 3D
femoral model is as follows:

1. Anatomical features of a femur are determined
automatically or by hand as shown in Table I and
Fig. 1.

2. According to the extracted anatomical features,
the femur is divided by 4 regions (femoral head,
femoral neck, greater trochanter, and femoral shaft).
Spherical and cylindrical coordinate systems are
defined in each region.

3. In each coordinate system, intersection points of
lines which distribute uniformly in the coordinate
system and the bone surface are defined as the
surface points. 3D coordinates of the surface points
are extracted and unique labels are assigned.

4. Steps 1 to 3 are repeated for a plenty number
of samples and an average shape is calculated.
Next, for each sample, the surface points with
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Fig. 2. Contributions of parametric model

same labels are compared with the average shape
and displacement vectors are calculated. Then, the
principal component analysis (PCA) is applied to
the matrix consisting of displacement vectors and
several shape parameters are extracted as principal
components and vectors.

The parametric femoral model used in the following
experiments was created using CT images of 51 patients.
By applying PCA to 51 samples of 3D femoral shapes,
we extracted the most significant 50 principal components
(p1, p2, . . . , p50), standard deviation (σ1, σ2, . . . , σ50), and
corresponding principal vectors (v1, v2, . . . , v50). With the
obtained parametric femoral model, the general 3D shape of
a femur is expressed as

x′ = x+ (p1 · σ1 · v1) + (p2 · σ2 · v2) + · · · (1)

where x is the surface point of the average shape and x′ is
the surface point of the general shape. Therefore, the general
3D shape of a femur is expressed by the parametric femoral
model with

• average 3D shape and several principal vectors (pre-
determined)

• several (up to 50) shape parameters (estimated)

Figure 2 shows the contribution ratio of the shape parameters
for the statistical femoral model.

IV. RECONSTRUCTION OF 3D FEMORAL SHAPE FROM

TWO 2D FLUOROSCOPIC IMAGES

In this section, we introduce the 2D/3D registration algo-
rithm and the estimation procedure of the optimum shape
parameters using two fluoroscopic images.

This 2D/3D registration algorithm utilizes the contour
lines of the silhouette of the 2D image and the projected
contour lines of the 3D model. The optimum pose of the 3D
model is determined so that both contour lines coincide each
other on the 2D image plane. In popular approaches such as
ICP algorithm, the error metric is usually defined as the sum
of the distances between the points on the 2D contour lines
and their nearest points on the projected contour lines of the
3D model. However, the nearest point search is a laborious
task and time consuming even for the kd tree-based algorithm
[25].

In our approach, the 2D distance map [7] is utilized.
Firstly, the 2D distance map from the contour lines is created
on the 2D image using the Fast Marching Method [21] or
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raster scan algorithms [24]. Once the 2D distance map is
created, the error metric is obtained directly from the 2D
distance map as a value at the points on the projected contour
lines of the 3D model. By taking the course to fine strategy
named the “Distance Band” [7], the 2D distance map can be
constructed quite rapidly using the Fast Marching Method.

In case that 2D/3D registration and estimation of the shape
parameters are performed at the same time, the depth from
the view point and the scale of the 3D model cannot be
distinguished. Therefore, the proposed algorithm utilizes two
fluoroscopic images taken from two viewpoints at differ-
ent positions. In addition, we assume that the 3D femoral
parametric model is constituted by a large number of small
triangle patches with almost same size.

A. Registration of 2D fluoroscopic images and 3D paramet-
ric model

The brief registration procedure of the 2D fluoroscopic
images and the 3D parametric model is as follows:

1. Extract contour lines of the femur in the fluoro-
scopic images using active contour model such as
snakes or Level Set Method [20].

2. Construct 2D distance map from the extracted
contour lines using the Fast Marching Method [21].
Figure 3 shows an example of the constructed 2D
distance map of a femoral image.

3. Place the parametric femoral model at an arbitrary
position and calculate the 2D projection image of
the 3D model.

4. Extract contour lines of the projected image and
corresponding 3D patches of the 3D model. This
procedure can be executed by the OpenGL hard-
ware accelerator quite rapidly.

5(a). Apply the force which is calculated from the 2D
distance map at the projected contour points di-
rectly to the corresponding 3D patch. Details are
shown in the following section D.

6(a). Using the robust M-estimator, which is one of the
robust estimation techniques, the total force and
moment around the center of gravity is calculated.

7(a). The above procedure from steps 3 to 6(a) is re-
peated for all the images taken from the different
view points and the total force and moment are
calculated.

8(a). Update the pose of the 3D parametric model ac-
cording to the total force and moment.

9(a). Repeat from steps 3 to 7(a) until the magnitude of
the total force and moment becomes less than the
pre-defined threshold value.

B. Estimation of the shape parameters

Estimation procedure of the optimum shape parameters of
the 3D parametric femoral model is shown in this section.
This procedure also uses the 2D distance map from the
contour line of the femur in the fluoroscopic image, which
has already been constructed as the above section.

+20 pixels

Boundary

Contour line in distance map

+40 pixels

Fig. 3. 2D distance map for femoral image

After step 4 of the above procedure, optimum shape
parameters are estimated as follows:

5(b). Calculate the error E which is defined as the sum
of the value of the 2D distance map at the projected
contour line of the 3D parametric model.

6(b). Find the optimum shape parameters which mini-
mizes the error E at the current pose using the
conjugate gradient method.

7(b). Reconstruct the 3D shape according the obtained
shape parameters using Eq.(1).

8(b). Repeat from steps 3 to Step 7(b) until the error E
becomes less than the pre-defined threshold value.

C. Fast extraction of the projected contour line of the 3D
parametric femoral model

The contour detection and identifying triangular patches
on the 3D model corresponding to points on the contour
line are computationally expensive and time consuming.
In our implementation, we utilize the high-speed rendering
function of the OpenGL hardware accelerator and thus these
procedures are executed quite rapidly.

The detailed algorithm is as follows: Initially, we assign
different colors for all the triangular patches in the 3D model
and draw the projected image of the 3D model on the image
buffer using the OpenGL hardware accelerator. The contour
points of the 3D model are detected by raster scanning of
the image buffer. By reading colors of the detected contour
points, we can identify the corresponding triangular patches
on the 3D geometric model.

D. 2D/3D registration using the robust M-estimator

After obtaining the distance map on the 2D fluoroscopic
image and the list of the triangular patches of the 3D model
corresponding to the contour points, the force fi is applied
to all the triangular patches of the contour points (Figs.4 and
5) as explained in Step 5(a).

fi = Di
∇Di

|∇Di| (2)

where Di is the value of the distance map at the contour
point, which corresponds to the triangular patch i, and ∇Di

is the gradient of Di.
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Fig. 4. Force fi is applied to 3D triangular patch i on contour line
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In step 6(a), the total force and moment around the center
of gravity is calculated with the following equations.

F =
∑

i

ψ(fi) (3)

M =
∑

i

ψ(ri × fi) (4)

where ri is a vector from the COG to the triangular patch
i and ψ(z) is a particular estimate function. In practical
scenario, the contour of the femur is occasionally occluded
or blurred, or the 2D image is corrupted by noise. In these
cases, the obtained boundary does not coincide with the
projected contour of the 3D model and the correct distance
value cannot be obtained. To deal with this problem, we
introduces the robust M-estimator to ignore contour points
with a large amount of errors.

Let’s consider the force fi and the moment ri × fi as an
error zi and the sum of the error as

E(P ) =
∑

i

ρ(zi) (5)

where P is the pose of the 3D parametric model and ρ(z)
is a particular estimate function which is defined as

∂ρ(z)
∂z

= ψ(z) (6)

The pose P which minimizes the error E(P ) is obtained as
the following equation.

∂E

∂P
=

∑

i

∂ρ(zi)
∂zi

∂zi

∂P
= 0 (7)

Ap

Fig. 6. Directions of fluoroscopic images

Front view Side view

Fig. 7. Reconstructed fluoroscopic images

Here, we define the weight function w(z) as the following
equation in order to evaluate the error term.

w(z) =
1
z
ψ(z) =

1
z

∂ρ(z)
∂z

(8)

From the above equation, we obtain the following weighted
least squares method.

∂E

∂P
=

∑

i

w(zi)zi
∂zi

∂P
= 0 (9)

In our implementation, the optimum pose which minimizes
the error E(P ) is obtained by the steepest gradient method
as shown in step 9(a).

V. EXPERIMENTS

A. Simulation using DRRs

Firstly we conducted the experiments using DRRs (Digi-
tally Reconstructed Radiographs) to evaluate the fundamental
performance of the proposed method. In the experiment, the
estimation accuracy for 10 femoral models is examined using
two reconstructed fluoroscopic images. Among 10 models,
5 models (modeldata1 ∼ 5) are used for the construction of
the 3D parametric model and 5 models (testdata1 ∼ 5) are
not used.

We determine the directions of the fluoroscopic images
as shown in Fig.6 considering the possible direction in
actual radiographic examination. In this condition, two view
directions meet at right angles at the main axis of the femur
AP . Examples of the reconstructed fluoroscopic images are
shown in Fig.7.

All of the 3D femoral shape used in the experiments were
reconstructed precisely by the CT scanner beforehand, and
the optimized shape parameters which minimizes distance
errors between surface points were determined by comparing
the 3D actual shape and the 3D parametric model and
searching all possible candidates (ground truth).

Firstly, we chose up to 10 principle components and
estimated the pose and the optimum shape parameters of
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the femur on the fluoroscopic images. In this experiment,
the pose estimation of the femur and the optimum parameter
estimation were repeated alternatively and independently. An
example of the experimental results for testdata 4 is shown
in Fig.8 which illustrates the average shape, the actual shape
and the estimated shape, respectively.

Figure 9 indicates the average error between the estimated
shape and the actual shape. The average error is defined as
the average of the minimum distance from the surface point
of the estimated shape to the triangle patches of the actual
shape. In this figure, “A” on the horizontal axis indicates the
average error at the initial pose and initial shape parameters
(all the parameters are set to “0”) before registration, and
“0” indicates the average error when the pose is estimated
but all the shape parameters are fixed to initial values. This
figure shows that the average error gradually decreases as
the number of the estimated shape parameters increases.
However, the average error converges when the number of
the shape parameters is around 5 and no significant difference
is observed even if the number of the shape parameters
increases.

In addition, Fig.10 shows kinds of errors defined as
follows in case that the number of the estimated shape
parameters is 5. Figure II also indicates the average of the
error, the standard deviation, maximum value, and minimum
value for 10 models.

Average error 1
The average error between the average model and
the actual shape at the initial pose

Average error 2
The average error between the 3D optimized esti-
mated shape and the 3D actual shape by comparing
the actual shape and the parametric model (ground
truth).

Average error 3
The average error between the estimated shape
and the actual shape by comparing the two 2D
fluoroscopic images and the 3D parametric model
(proposed method).

The experimental results show that the average error 3
between the estimated shape and the actual shape is less
than 1.1 mm at worst and it is verified that the 3D shape
can be estimated using the two 2D fluoroscopic images
with the same accuracy in case that the 3D shapes are
compared directly. Moreover, it is confirmed that there is
no significant difference between models which are used for
the construction of the parametric femoral model and not
used.

B. Experiments using phantom femur

We conducted the experiments using a dry bone of a femur
and fluoroscopic images. In the experiments, the special
fluoroscopic imaging apparatus (Siemens, Siremobil ISO-
C) was used for the fluoroscopic photography from various
directions around the phantom femur.

Firstly, we captured images of calibration markers with
9 glass bubbles (left of Fig.11) at 50 positions around

(a) Average shape (b) Actual shape (c) Estimated shape

Fig. 8. Femoral model used for shape parameter estimation
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Fig. 9. Average error for numbers of estimated shape parameters

the markers from 0 to 190 degrees using the fluoroscopic
apparatus. 3D positions of the markers were also measured
by the CT scanner precisely. Next, the intrinsic and extrinsic
parameters of the fluoroscopic apparatus were calibrated by
the Tsai’s method [26].

After the calibration, we replaced the markers with the
dry bone of a femur and captured 50 images at the same
positions. In addition, the precise 3D shape of the dry bone
was measured by the CT scanner. Next, we chose two
fluoroscopic images from 50 images as mentioned below and
estimated the pose and the optimum parameters in fluoro-
scopic images using the propose techniques. The examples
of the fluoroscopic images are shown in Fig.12.

Figure 13 shows one example of the pair (No.4 and 24)
of the fluoroscopic images, which were captured from the
directions crossing at right angles. The average errors of
the estimated femoral shape are shown in Fig.14 and Table
III for the various number of shape parameters used for
the estimation. The estimation process and the estimated
3D shape in case that the number of the estimated shape
parameters is 10 are shown in Figs.15 and 16. The calculation
time is about 1 minute by Pentium IV, 3.2GHz, which
includes the contour detection by the Level Set Method and
the shape parameter estimation.

Finally, the average errors for various pairs of the fluoro-
scopic images are shown in Fig.17 in case that the number
of the estimated shape parameters is 10. As the results
of a series of experiments using the phantom femur, we
concluded that the 3D shape can be estimated with the
average error of less than 1.2 mm if we choose the proper
images captured from the directions crossing at about right
angles.
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average STD. maximum minimum
Average error 1 1.69 0.54 2.52 0.90
Average error 2 0.90 0.13 1.06 0.60
Average error 3

(testdata) 0.91 0.15 1.08 0.66
(modeldata) 0.81 0.07 0.90 0.71

TABLE II

COMPARISON OF AVERAGE ERRORS (MM)

VI. CONCLUSIONS

We proposed a method to estimate a 3D shape of patient’s
femur from only two fluoroscopic images using a parametric
femoral model. Though a precise 3D shape of a femur is
usually measured by a CT scanner or a MRI system, our
method enables to estimate a precise 3D shape with only
two fluoroscopic images taken by a low cost fluoroscopic
inspection apparatus. Thus the cost of the inspection system
can be dramatically reduced and the 3D image-based medical
diagnosis becomes available even in small clinics.

The experimental results show that the average error
between the estimated shape and the actual shape is less than
1.1 mm at worst, and it is verified that the 3D shape can be
estimated using the two 2D fluoroscopic images taken from
the different view points with the same accuracy in case that
the 3D shapes are compared directly.

Our future works includes study of the optimum condi-
tions such as the optimum number and directions of the
fluoroscopic images, and clinical experiments in fluoroscopic
image diagnosis.
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