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Abstract

In medical diagnostic imaging, the X-ray CT scanner
and the MRI system have been widely used to examine
3D shapes and internal structures of living organisms and
bones. However, these apparatuses are generally large and
very expensive. Since an appointment is also required be-
fore examination, these systems are not suitable for urgent
fracture diagnosis in emergency treatment. However, X-
ray/fluoroscopy has been widely used as traditional medi-
cal diagnosis. Therefore, the realization of the reconstruc-
tion of precise 3D shapes of living organisms or bones from
a few conventional 2D fluoroscopic images might be very
useful in practice, in terms of cost, labor, and radiation ex-
posure. The present paper proposes a method by which to
estimate a patient-specific 3D shape of a femur from only
two fluoroscopic images using a parametric femoral model.
First, we develop a parametric femoral model by the statis-
tical analysis of 3D femoral shapes created from CT images
of 56 patients. Then, the position and shape parameters
of the parametric model are estimated from two 2D fluo-
roscopic images using a distance map constructed by the
Level Set Method. Experiments using in vivo images for
hip prosthesis patients are successfully carried out, and it is
verified that the proposed system has practical applications.

1. Introduction

In medical diagnostic imaging, the X-ray Computed To-
mography (CT) scanner and the Magnetic Resonance Imag-
ing (MRI) system have been widely used to examine the 3D
shape or internal structure of living organisms and bones.

However, these apparatuses are generally large and very ex-
pensive, and thus, they are usually installed in large med-
ical institutions rather than small local clinics. Since an
appointment is also required before examination, these sys-
tems are not suitable for urgent fracture diagnosis in emer-
gency treatment.

However, X-ray has been widely used as traditional med-
ical diagnosis. Recently, digital fluoroscopy has been de-
veloped and widely used in many hospitals. The cost of this
fluoroscopic inspection system is much lower than that of
CT or MRI systems and the system can be dealt with more
conveniently. Furthermore, the risk of radiation exposure is
also lower than that of the CT inspection system.

In the present paper, a technique by which to estimate
the patient-specific 3D shape of a femur from only two flu-
oroscopic images is proposed. The proposed technique uti-
lizes a parametric femoral model constructed by statistical
analysis of 3D femoral shapes created from CT images of
56 patients. The position/attitude and shape parameters of
the parametric model are then estimated from two 2D flu-
oroscopic images using a distance map constructed by the
Level Set Method. Experiments using in vivo images for
hip prosthesis patients, are successfully carried out, and it is
verified that the proposed system has practical applications.

2 Related works

The 2D/3D registration problem is well established in
image processing, especially for texture mapping in Com-
puter Graphics or Augmented Reality. For a rigid ob-
ject, 1) feature-based techniques [1],[2],[3], 2) image-
based techniques using 3D texture, reflectance, brightness,
and shading [4],[5],[6], and 3) silhouette-based techniques
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[7],[8],[9],[10], have been proposed. In particular, in sur-
gical navigation systems, Digitally Reconstructed Radio-
graphs (DRRs) [11],[12] are widely used in 2D/3D regis-
tration for the fluoroscopy-guided surgery.

In 2D/3D registration of a non-rigid object such as soft
tissues in medical imaging, similarity measure [13],[14],
mutual imformation [15], affine [16],[17], geometric hash-
ing [18], and displacement-field-based transformation [19]
have been proposed and tested. In addition, the 3D shape
estimation of a parameterized object, such as the shape re-
construction of mathematical plaster models with unknown
parameters using a laser range finder [20], or the compari-
son of multiple cross-section images of a 3D model and a
3D parametric model [21], has also been studied. However,
these studies assumed the use of a sufficient number of im-
ages or a precise 3D shape taken by a laser range finder,
and only a few studies have examined 3D non-rigid shape
reconstruction from only a few 2D images [22],[23],[24].

3 3D parametric femoral model

We utilize the statistical shape model of the femur pro-
posed by Okada [25],[26]. In this technique, a number of
3D femoral shapes created from CT images are analyzed
statistically, and the parametric femoral model [27],[28],
which consists of the average 3D shape and several shape
parameters, is created. With this parametric femoral model,
a general 3D shape of the femur is expressed by the average
shape and several shape parameters.

The concrete procedure for creating a parametric 3D
femoral model is as follows:

1. Surface models of femurs are created from CT images
by manual segmentation and Marching Cubes.

2. Local coordinate axes of the surface models are deter-
mined by applying the principal component analysis
(PCA) to the set of 3D positions of the node points in
each surface model. The Z axis is determined as the
axis corresponding to the largest eigenvalue, which is
toward the longitudial direction of the femoral shaft.
The region where the length from the top of the
femoral head is less than 35 % of total length of the
femur is extracted as a proximal femur and the center
of gravity is defined as the origin of the local coordi-
nate system.

3. One of the femoral model is selected as the reference
model and displacement vector fields to all other mod-
els described by the thin plate spline are calculated us-
ing the non-rigid registration algorithm[29].

4. 1500 surface points on the reference model are selected,
and their corresponding surface points on other models
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Figure 1. Contribution of parametric model

are determined according to the displacement vector
fields. Each of the femur surface models is represented
by 1500 3D positions, which is regarded as a 1500 � 3
dimensional shape vector. Given � shape vectors, the
average shape vector is given by their average. PCA is
applied to a set of the shape vectors subtracted by the
average shape vector to obtain the eigenvectors whose
coefficients correspond to the shape parameters.

The parametric femoral model used in the following
experiments was created using CT images of 56 patients.
By applying PCA to 56 samples of 3D femoral shapes,
we extracted the most significant 50 principal components
(��� ��� � � � � ���), standard deviation (��� ��� � � � � ���), and
corresponding principal vectors (��� ��� � � � � ���). With the
obtained parametric femoral model, the general 3D shape
of a femur is expressed as

�
� � �� ��� � �� � ��� � ��� � �� � ��� � � � � (1)

where � is the surface point of the average shape and �
�

is the surface point of the general shape. Therefore, the
general 3D shape of a femur is expressed by the parametric
femoral model with

� average 3D shape and several principal vectors (pre-
determined)

� several (up to 50) shape parameters (estimated)

Figure 1 shows the contribution ratio of the shape parame-
ters for the statistical femoral model.

4. Reconstruction of 3D femoral shape from
two 2D fluoroscopic images

In this section, we introduce the 2D/3D registration al-
gorithm and the estimation procedure of the optimum shape
parameters using two fluoroscopic images.

This 2D/3D registration algorithm utilizes the contour
lines of the silhouette of the 2D image and the projected
contour lines of the 3D model. The optimum position of the
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3D model is determined such that the contour lines coin-
cide with each other on the 2D image plane. In commonly
used approaches such as the ICP algorithm, the error metric
is usually defined as the sum of the distances between the
points on the 2D contour lines and their nearest points on
the projected contour lines of the 3D model. However, the
nearest point search is a laborious task and is time consum-
ing even for the kd tree-based algorithm [30].

In the present approach, the 2D distance map [7] is uti-
lized. First, the 2D distance map from the contour lines is
created on the 2D image using the Fast Marching Method
[31],[32] or raster scan algorithms [33]. Once the 2D dis-
tance map is created, the error metric is obtained directly
from the 2D distance map as the value at the points on the
projected contour lines of the 3D model. Using the course-
to-fine strategy called “Distance Band” [7], a 2D distance
map can be constructed quite rapidly using the Fast March-
ing Method.

After creating the 2D distance map, the parametric
femoral model is placed at an arbitrary position and the
2D projection image of the 3D model is calculated. Then,
contour lines of the projected image and corresponding 3D
patches of the 3D model are extracted. Finally, the force
which is calculated from the 2D distance map at the pro-
jected contour points is applyed directly to the correspond-
ing 3D patch, and the optimum position and the shape pa-
rameters are estimated as shown in Fig.3.
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Figure 2. 2D distancemap from contour in the
femoral image

5 In vivo experiments

We conducted in vivo experiments for hip prosthesis pa-
tients. Fluoroscopic images of four patients were taken in
clinical practice using the fluoroscopic imaging apparatus
(Siemens, Siremobil ISO-C), and shapes measured by the
CT scanner and estimated by parameter estimation were
compared.

��� �����	�
��� 	�����	�

First, we measured the internal and external parameters.
A non-coplanar marker and a coplanar marker, shown in
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Figure 3. Calculation of the total force and
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Figure 4. Non-coplanar and coplanar markers

Fig.4, are used for the calibration of external and internal
parameters, respectively. These markers are constructed of
acrylonitrile butadiene styrene (ABS), which indicated the
highest transmission of X-rays in preliminary experimen-
tation. The non-coplanar marker contains nine small stain-
less steel spheres and the coplanar marker contains 16 small
stainless steel disks. The calibration procedure using these
markers is as follows:

step 1. The non-coplanar marker is captured by X-ray CT
and the relative positions of the stainless steel spheres

Figure 5. Example fluoroscopic image of non-
coplanar marker
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X-ray apparatus

Coplanar marker

Figure 6. X-ray photography of coplanar
marker

Figure 7. Two fluoroscopic femoral images of
hip prosthesis patients

are measured.

step 2. A fluoroscopic image of the non-coplanar marker is
captured, as shown in Fig.5, and the internal param-
eters of the fluoroscopic imaging apparatus are esti-
mated by Tsai’s method.

step 3. The coplanar marker is placed under the patient’s
hip and two fluoroscopic images of the femur are cap-
tured from two directions, as shown in Figs.6,7.

step 4. The external parameters of two fluoroscopic images
are estimated using the internal parameters obtained in

Figure 8. Extracted contours of the femur in
fluoroscopic images

Step 2 and the projection image of stainless steel disks
by Tsai’s method.

��� �����	�

First, we manually extracted the contour of the femur
(Fig.8) in the fluoroscopic images (Fig.7). Image size and
resolution are 512 � 512 pixels and 0.454 mm/pixel. We
then estimated the position and 10 shape parameters from
the silhouette of the femur. The precise 3D shapes of pa-
tients’ femurs were measured precisely by CT scanner.

The average errors and standard deviations of the esti-
mated femoral shapes are shown in Fig.9. In these figures,
“0” in the horizontal axis shows the case in which only the
position is estimated without parameter estimation.

The experimental results show that the average error be-
tween the estimated shape and the actual shape is approxi-
mately 0.8 mm to 1.1 mm for the in vivo experiments. One
example of average, actual, and estimated shapes for Case
4 is shown in Fig.10, and the distribution of average error is
shown in Fig.11. In Fig.11, dark regions indicate less error,
and the brightness of each point is proportional to its aver-
age error. From this figure, we verified that the errors in the
femoral head and lesser trochanter are reduced.
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Figure 9. Average error and standard devia-
tion for the number of estimated shape pa-
rameters for the femurs of four patients
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Figure 10. Actual and estimated femoral
model with and without shape parameter es-
timation for Case 4

6 Conclusions

We proposed a method by which to estimate the 3D
shape of the in vivo femur from only two fluoroscopic im-
ages using a parametric femoral model. Although the pre-
cise 3D shape of the femur is usually measured using a CT
scanner or an MRI system, the proposed method enables
a precise 3D shape to be estimated using only two fluoro-
scopic images taken by an inexpensive fluoroscopic inspec-
tion apparatus. Thus, the cost of the inspection system can
be dramatically reduced and the 3D image-based medical
diagnosis becomes available even in small clinics.

In vivo experiments revealed the average error between
the estimated shape and the actual shape to be 0.8 mm to 1.1
mm, and it was verified that the 3D shape can be estimated
using two 2D fluoroscopic images taken from different view
points with the same accuracy as in the case of 3D shapes
being compared directly.
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