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Abstract— To provide daily-life assistance appropriately by a
service robot, the management of houseware’s information in
a room or a house is an indispensable function. Especially,
the information about what and where objects are in the
environment are fundamental and critical knowledge. We can
track housewares with high reliability by attaching markers
such as RFID tags to them, however, markerless housewares
management system is still useful since it is easy-to-use and
low cost. In this work, we present an object management
system using an egocentric vision and a region-based convo-
lutional neural network (R-CNN) to automatically detect and
register housewares. The proposed system consists of smart
glasses equipped with a wearable camera, a cloud database
which manages object information, and a processing server for
detecting and registering housewares to the cloud database.
We perform two experiments. First, we train the R-CNN on
a newly-constructed dataset to detect various housewares and
configure a houseware-specific detector. All systems are com-
posed of ROS packages. Second, we conduct experiments for
automatic housewares registration using the proposed system.
We demonstrate that the proposed system can detect, recognize,
and register housewares approximately in real time.

I. INTRODUCTION

In recent years, the rapid aging of the population has
caused serious problems such as a labor shortage in hospitals
or care facilities. To mitigate this problem, the development
of a service robot coexisting with a human in a daily-life
environment is an urgent challenge. We have been focusing
on the concept of a context-aware intelligent space, which
is so-called Informationally-Structured Environment (ISE),
and developing its architecture named ROS-TMS[1][2]. The
ISE is an intelligent space where various sensors are dis-
tributed and combined, organizing a sensor network within
the environment. According to the main idea of the ISE,
the ROS-TMS not only utilizes the sensors mounted on the
robot but also embeds the various sensors such as laser range
finder or cameras in the environment. Thus, the service robot
can obtain information of an extensive scope and carry out
various tasks without being limited by own performance,
by using all the sensors and resources the ISE provides.
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Furthermore, it models an integrated system modularizing
all of functions and processes. Executing the modularized
processes and interprocess communication is based on the
Robot Operating System (ROS)[3] framework.

In the field of developing service robots, the most prospec-
tive service is a fetch-and-carry task, which is comparatively
easy to design. To achieve it, a service robot needs to
know where the target object is or which state it is. It is
also necessary to measure position and status of objects
within the symbiosis space on a regular basis. Current ROS-
TMS manages houseware information by attaching some
identifiable markers such as an RFID tag on them, as we
describe in Section II-A. This approach is taken in the
research fields of ubiquitous computing and the Internet of
Things (IoT). Although these systems are able to reliably
track the objects, they may not completely recognize the
status of the environment if the sensors can only measure
particular objects, if its measurement range is limited, or if a
new object is added. One solution to make the measurement
of scattered housewares more flexible is to use the technique
of markerless object tracking. However, it still requires high-
resolution images and high-precision object detection tech-
nique. Nakayama et al.[4] developed a smart goggles system
which recognizes objects appearing in the daily-life scene in
real-time and enables to improve a visual memory. Owing
to the goggles equipped with a camera, rich information
of the object that the user is gazing and has interest can
be obtained from close position. Their object recognition
technique is based on a hand-designed image feature. In
recent years, an effectiveness of the feature automatically
learned from massive volumes of data has been shown in
the various field of real-world perception, which is based on
the well-known machine learning technique Deep Learning.
Furthermore, that can not only process in real-time on the
parallel computing environment, but also can be useful to
extend the scale of object recognition and improve the
runtime performance.

In this paper, we propose an automatic houseware registra-
tion system using smart glasses and the latest object detection
technique based on the Deep Learning, which is introduced
in Section III.

Our contributions can be summarized as follows:
• We train the houseware-specific detector based on the

latest object detection technique Faster R-CNN[5] and
modularize it with ROS messaging framework.

• We develop an automatic houseware registration sys-
tem using smart glasses, our cloud database, and the
houseware-specific object detection technique.
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(a) Intelligent Cabinet System (b) Motion Capture System

Fig. 1. Conventional systems to manage housewares in ROS-TMS

• We perform an empirical evaluation and demonstrate
that our system can detect housewares and register their
information in real time even without attaching any
identifiable markers on them.

II. INFORMATIONALLY-STRUCTURED ENVIRONMENT

A. ROS-TMS

As mentioned in the previous section, we have been devel-
oping an integrated service robot system for Informationally-
Structured Environment, named ROS-TMS. Currently, it has
over 150 modules useful for a service robot to provide
daily-life assistance. Those modules include user interface,
task scheduler, robot controller, movement path planner,
and a database which manages ambient information. In this
section, we firstly explain about existing systems to measure
housewares in the environment and a cloud database to
manage their information. Secondly, we address the current
issues in terms of managing housewares.

1) Existing houseware measurement systems: In current
ROS-TMS, there are several systems to measure housewares
in a room. Figure 1 (a) shows an exterior of one of the
systems, Intelligent Cabinet System (ICS). In the system,
an RFID reader and load cells are installed on its storage
area and measure the RFID tags attached to stored objects
to recognize individually and estimate the positions by ana-
lyzing the weight distribution on multiple load cells. Besides,
our refrigerator, named Intelligent Refrigerator System (IRS),
also has a similar type of this mechanism. Figure 1 (b) shows
motion capture camera, Vicon Bonita. In our experiment
space, over 20 cameras are embedded to track position and
posture of objects by measuring reflective markers attached
on them. To recognize an individual object, it needs to have
at least three markers on it and register those structure model
in advance.

2) Cloud database: We manage the housewares in the
environment with the cloud database. Our cloud database
is composed of a database (MongoDB) and an interface to
read/write data through the wireless network. As well as the
ambient information that the embedded sensors capture, it
manages every information relating to the symbiosis space
including static/dynamic maps and the task information that
the robot needs for operation. As for the houseware, its
position and name are provided in the database.

B. Problems in managing housewares

In current systems, there are some limitations to manage
housewares. First of all, although an RFID-based measure-
ment system such as the ICS can reliably track a stored
item, its measurement has several constraints. Housewares
should be located within the bounded measurement area
of the RFID reader and tags should be attached to them
manually. Meanwhile, a motion capture has a wide range of
measurement, however, it requires some laborious processes
to attach identifiable features on the object to be recognized
as well.

For these reasons, we focus on a generic object de-
tection technique to enable markerless tracking that uses
the appearance of the item itself. In current ROS-TMS,
various cameras are distributed to the human, the robot, and
the environment, thus it is possible to detect housewares
from various images of the daily life scene and manage
them in a wider scope. However, among these cameras,
embedded camera has difficulty to detect small-sized items
such as housewares, because of the low resolution and the
measurement distance. In this project, we take particular
note of an egocentric vision from the wearable camera
where it is possible to obtain the houseware image with
comparably high resolution and comprehend the interests
of the inhabitant. In the following section, we introduce a
notable system that manages housewares automatically by
applying generic object detection to the egocentric vision.

III. AUTOMATIC HOUSEWARE REGISTRATION SYSTEM

A. System overview

The proposed system consists of three parts as illustrated
in Figure 2:

• Smart glasses to stream the inhabitant’s egocentric
vision and enable the interactive services.

• Processing server to detect housewares from the
streamed image and register their information to the
cloud database.

• Cloud database to manage the information of an inhab-
itant, a robot, and housewares in the ROS-TMS.

The procedure of automatic registration is as follows.
At first, the smart glasses the inhabitant wears capture an
image by its embedded camera and stream them continuously
to the network as egocentric vision. The processing server
receives them to detect housewares. The detection function is
based on the neural network-based object detection technique
as we describe in Section III-D. The detected housewares
are registered to the existing ROS-TMS database with their
category name. Thus the system can automatically manage
scattered housewares in the environment.

B. Houseware detection from the egocentric vision

Egocentric vision, also known as first-person vision, can
be employed as a clue to recognize human actions or activi-
ties, estimate their intentions, and understand the life patterns
since the continuously-acquirable vision contains the rich
information about interactions with objects in a daily life.
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Fig. 2. System overview

Egocentric vision can indeed capture contextual information
and head motions related to the use of a particular object.
There are several works to solve such tasks by using object
recognition/detection techniques on egocentric vision. In the
activity recognition task, for instance, Pirsiavash et al.[6]
focused on observable objects to encode an egocentric video
into a representative feature. They employed Deformable Part
Model[7] approach for detecting objects. Faith et al.[8] used
regions of hands and objects which can be observed in the
vision as well, and are recently improved with convolutional
neural network (CNN) frameworks[9]. Meanwhile, as for an
application, Huang et al.[10] proposed an egocentric inter-
action system based on the hand/fingertip detection and they
utilized the latest object detection model, Faster R-CNN[5].
Owing to the model, they achieved real-time accurate hand
detection.

As described before, we focus on the fetch-and-carry task
as the most promising service for daily life assistance. Re-
garding the task, the measurement of housewares which have
a possibility to be required by the inhabitant is important to
let the robot know their positions promptly. Thus we focus
on egocentric vision to tackle the problem. Owing to the fact
that the housewares which the inhabitant has interests tend
to appear in egocentric vision, high immediacy of the service
provision can be expected by detecting objects from the
vision and updating our database. Furthermore, a wearable
camera can obtain higher-resolution images from the position
close to the object than an embedded camera fixed in walls
or ceilings.

In recent years, several high-performance wearable cam-
eras are provided in the market and that enables us to
capture egocentric vision easily just only by attaching it
to the head. Especially, smart glasses are very popular as
a human-computer interaction device since it has not only
onboard cameras but microphones, speakers, and see-through
displays. Besides, it operates on a lightweight OS, so that
we can use it as a portable computing device. Thus we
use the smart glasses as a egocentric camera, supposing the
applications of a user interface in the future.

C. Object detection techniques based on Deep Learning

Since the ImageNet Large Scale Visual Recognition Com-
petition (ILSVRC) 2012 that Krizhevsky et al.[11] won with

Fig. 3. Smartglasses: EPSON Moverio BT-200. The left pane is the exterior.
We attached some reflective markers on it to track the position and the
posture. The right pane is a manually-reconstructed scene for illustrative
purpose.

deep neural networks named AlexNet, convolutional neural
networks (CNNs) have gained a great deal of attention as
a powerful method to achieve a high accuracy of the image
understanding. As the latest result, CNNs have surpassed hu-
man’s ability to identify images, with achieving an extremely
low error rate[12][13].

In addition to image-based classification, the acquired
knowledge can be applied to a generic object detection task,
taking an approach to input regions of object proposal in
an image into a CNN. In the architecture called region-
based convolutional neural network (R-CNN)[14], it detects
multiple object proposals from an image in advance by ap-
plying the segmentation method called Selective Search[15]
and predicts a semantic label of the region-of-interest (RoI)
by propagating it through a CNN, so that achieves high accu-
racy object detection with a multiclass classification. More
recently, there are some works to speed up the detection
time. Fast R-CNN[16] introduced RoI pooling layer which
can pool any region in the final convolutional layer which
corresponds to object proposal into the fixed-size feature
map, so that enables to detect multiple objects by a one-shot
propagation. Moreover, Faster R-CNN[5] replaced Selective
Search that was a bottleneck at runtime with a neural network
called Region Proposal Networks (RPN). Now thus, with a
hardware acceleration by a graphics processing unit (GPU),
it has become available to detect multiple objects with
high accuracy approximately in real time. In the proposed
system, we employ the latest architecture Faster R-CNN as
a powerful function to understand what object humans are
seeing in the daily life scene.

D. Houseware-specific detection network

In the original implementation of the Faster R-CNN[17],
some models which are pre-trained on a large-scale dataset
are opened to the public and available to utilize while their
categories to detect differ from our situation; some of the
default categories such as an animal or a vehicle in the
PASCAL VOC dataset[18] are unlikely to appear in the
room. We train the network with a newly created dataset
which contains appropriate classes such as a bottle, a book,
and other housewares. Subsequently, we explain about our
settings of the network.

1) Network models: Faster R-CNN is composed of two
neural network-based modules. One is Region Proposal Net-
work (RPN) that are based on a CNN and produces a set of
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Fig. 4. The architecture of Faster R-CNN[5]

object proposals. The other is the Fast R-CNN detector[16]
that are also based on a CNN. It classifies an object in the
region proposed by the RPN and simultaneously regresses
the region of the detected object (bounding box). Both
modules have homogeneous convolutional layers to extract a
full-image feature and share their parameters, thus the Faster
R-CNN models a unified network as shown in Figure 4. As
the sharable convolutional features, we use the ZF model[19]
which has 5 convolutional layers and the VGG-16[20] model
which has 13 convolutional layers, which are investigated
in the paper[5] as the “fast” model and the “deep” model
respectively. We compare these models in terms of accuracy
and detection speed in runtime.

2) Dataset: We constructed a new dataset consisting of 11
housewares categories, which is a subset of the well-known
large-scale image dataset ImageNet[21] providing bounding
boxes for thousands of object categories as ground truth. The
detail of our dataset is indicated in the Table I. Among the
massive available images, we chose the categories with the
following two criteria.

• It already exists in our experiment environment.
• The bounding boxes are available as ground truth.

3) Training strategy: Three methods are discussed in the
paper[5] to train both RPN and Fast R-CNN, sharing their
convolutional layers. We employ the approximate joint train-
ing method which makes a time-consuming evaluation easier.
This method is not rigorous for ignoring a part of the network
response preferred to be treated, however, it works effectively
with reducing the training time and keeping the accuracy.
Firstly, the sharable convolutional layers are initialized with
a model pre-trained on the ImageNet classification set and the
entire networks are simultaneously trained on the ImageNet
detection set as one network, minimizing the combined loss
from both RPN and Fast R-CNN.

TABLE I

THE HOUSEWARE-SPECIFIC DATASET CONTAINING 2659 IMAGES OF 11

HOUSEWARE CATEGORIES. WORDNET ID IS IDENTIFIABLE NUMBER

MANAGED IN THE IMAGENET. # REPRESENTS “NUMBER OF”.

Category WordNet ID # regions # images

Book n02870526 133 116
Coffee can n03062985 213 179
Controller n03096960 200 179
Cup n03147509 169 153
Dish n03206908 128 110
Glass n03438257 179 149
Kettle n03612814 205 183
Teapot n04398044 599 579
Water bottle n04557648 478 437
Watering pot n04560292 176 153
Wine bottle n04591713 556 421

Total 3036 2659

E. Implementation details

1) Modularization by ROS framework: The ROS-TMS
employs Robot Operating System (ROS)[3] as an interpro-
cess communication framework. ROS is efficient to configure
a large distributed computing system. Furthermore, it is
critical for CNNs to utilize GPU acceleration for speeding
up the runtime, hence the process possibly occupies much
of the available computing resources. In the future of ROS-
TMS, launching the multiple object detection processes for
each service is inefficient and can be a high load. For these
reasons, we modularized the Faster R-CNN operation with
ROS messaging functions and made the function sharable to
improve a functional reusability and decentralize the load on
the large-scale processing. Object detection is running on a
decentralized server and can be used by other applications, or
in any other generic research purpose. Basically, we extend
the original implementation[17] by Python launguage.

2) Android application on the smart glasses: Including
ours, most of the smart glasses are an Android-based device.
In order to stream the egocentric images into the local
network, we build an Android application running on them
and even here employ the ROS messaging for packets of the
image.

IV. EXPERIMENTS

A. Evaluation of the houseware-specific Faster R-CNN

As described, we evaluate both the ZF model and the
VGG-16 model on our houseware dataset. In general, CNNs
require much of image resources to optimize their parame-
ters. In this experiment, due to the shortage of our dataset,
we evaluate the performance of the houseware-specific Faster
R-CNN by 4-folds cross validation. At first, we divide the
entire dataset into four subsets and validation is repeated four
times with different combinations of a training set and a test
set. For each fold, one of the subsets is used as a test set
and the other three subsets form a training set. When training
on this set we use 70k mini-batch iterations. The evaluation
metric is mean Average Precision (mAP) in accordance with
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Fig. 5. Example of houseware detection on a web camera. Four housewares
are bounded with red boxes and given the classified labels

the PASCAL VOC benchmark[18]. Predicted bounding box
is counted as a correct detection when the intersection area
with its ground truth exceed 50%. Thus the average accuracy
across all folds is computed as a final result. The evaluations
are all performed on the NVIDIA GTX Titan X GPU.

1) Performance of the detection: In Table II we show the
evaluation results for both VGG16 model and ZF model. The
VGG-16 model achieves the higher result for all categories
with an mAP of 72.4% and the ZF model has an mAP of
66.3%. Although the way of evaluation is different from
the original metric, we can say that the training properly
works, by taking into account the fact that the public result
on PASCAL VOC 2012 is 70.4% mAP[5]. The “book” and
“glass” categories show the low accuracy comparing with the
others. One of the reasons is the remarkable changes in object
appearance according to the status (e.g., an open or closed
book) and the transparency of materials. Therefore we think
the accuracy can be improved by increasing the number of
training samples. In training for each fold, the VGG-16 and
the ZF took 9.6 hours and 4.5 hours respectively. Figure 5
shows an example of a detection result.

B. Automatic registration experiments

Next, we conduct an experiment to automatically register
the detected housewares to the ROS-TMS database, with the
two models trained in the Experiment A. In this experiment,
we confirm the following functions.

• Our system captures the egocentric vision from smart
glasses and stream them to the processing server.

• Our system detects multiple housewares within the
given image and register the predicted result to the
database.

We observe a success rate of registration and its process-
ing speed on the setting of that the smart glasses detect
housewares over consecutive frames. As for the details, we
set the smart glasses and multiple housewares in advance
as the glass can capture all of housewares. Subsequently,
our system starts to detect and register housewares from the

Fig. 6. The setting of Experiment B described in Section IV-B

images captured by the smart glasses. Figure 6 shows the
settings of this experiment.

1) Results: As a result, our proposed system could register
all of the detected housewares. However, image quality is
deteriorated by the movement of the smart glasses and the
accuracy of object detection gets worse, for example, if the
user changes the face direction quickly. With the VGG-16
model, the proposed system achieved the detection in 0.131
sec and its frame rate is 7.5 fps. Meanwhile, with the ZF
model, the system achieved the detection in 0.064 sec and
its frame rate is 8.8 fps. The entire processing time of the
VGG-16 model is slower than the ZF model, however, the
process is operated in a sufficiently high speed for real-time
registration. Figure 7 shows some examples that the proposed
system detected on the houseware dataset.

V. CONCLUSIONS

We developed the automatic houseware registration sys-
tem using the latest object detection architecture and smart
glasses. We conducted the two experiments. In the first,
using the public large-scale image set, we trained houseware-
specific Faster R-CNN and modularized it as a sharable
houseware detection server. In the second, we carried out the
registration experiment with the entire system. From those
results, we confirmed that our system can detect housewares
within the smart glasses’ vision and automatically register
their information to the database in real time.

The current system has not adopted the houseware iden-
tification on the instance level. Furthermore, it manages
only the information about a category. Our future works
include implementations of two functions. One is to estimate
a position of a detected houseware using the posture taken by
the position tracker in Figure 3 (a). The other is to identify
instances of housewares using the position information or
their appearance, that enables the service robot to find an
intended houseware from among scattered objects promptly.
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TABLE II

RESULTS IN 4-FOLDS CROSS VALIDATION. MAP DENOTES MEAN AVERAGE PRECISION.

Model mAP Book Coffee can Controller Cup Dish Glass Kettle Teapot Water bottle Watering pot Wine bottle

VGG-16 71.7 50.7 89.9 80.5 64.4 67.4 53.4 67.8 88.8 74.8 67.4 83.3
ZF 66.3 45.2 89.6 77.6 58.8 58.7 46.0 61.9 85.6 67.6 59.8 78.9

(a) Detection of the book (a) Detection of the water bottle

Fig. 7. Example of screens on the smart glasses which render the result of the housewares detection.

Science and Technology based Radical Innovation and En-
trepreneurship Program (COI Program).”
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