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Abstract— We propose an efficient 3D global localization and
tracking technique for a mobile robot in a large-scale environ-
ment using 3D geometrical map and a RGB-D camera. With the
rapid development of high-resolution 3D range sensors, high-
speed processing of a large amount of 3D data is becoming an
urgent challenge in robotic applications such as localization.
To tackle this problem, the proposed technique utilizes a
ND (Normal Distributions) voxel representation. Firstly, a 3D
geometrical map represented by point-clouds is converted to
a number of ND voxels, and local features are extracted
and stored as an environmental map. In addition, range data
captured by a RGB-D camera is also converted to the ND voxels,
and local features are calculated. For global localization and
tracking, the similarity of ND voxels between the environmental
map and the sensory data is examined according to the local
features or Kullback-Leibler divergence, and optimum positions
are determined in a framework of a particle filter. Experimental
results show that the proposed technique is robust for the
similarity in a 3D environmental map and converges more stable
than a standard voxel-based scan matching technique.

I. INTRODUCTION

For a mobile robot, a high-precise and reliable localiza-
tion is a fundamental and indispensable requirement. More
precisely, robot localization problem generally falls into the
following categories:

a) Tracking with prior knowledge such as a previous
position or local travel distance

b) Global positioning without prior knowledge
In addition, according to sensors used for the localization,
they can be classified into the following types[1], [2].

1) Positioning using on-board internal sensors such as
odometry or IMU

2) Positioning using on-board external sensors such as
camera, LIDAR, or GPS

3) Positioning using off-board sensors installed in an
environment[3]

The aim of this paper is to propose a new efficient localiza-
tion technique in an indoor environment which is available
not only for tracking but also for global positioning using
an external 3D sensor. Especially we focus on a technique
which can handle a huge amount of 3D range data taken by
a 3D range sensor within a realistic processing time.
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A 2D laser range finder and an ultrasound sensor are very
popular devices for mobile robot localization. For example,
the most of modern 2D localization techniques utilize a 2D
laser range finder. Robot posotions are determined based
on the similarity evaluation between a 2D environmental
map and 2D measured range data[4]. However, owing to
the development of a 3D laser scanner in recent years, a
precise 3D environmental map is becoming available with a
considerably low cost[5], [6], [7], [8], [9], [10]. In addition,
a low cost range sensor such as Microsoft Kinect or Swiss
Ranger SR4000 has been available on the market. These
sensors called RGB-D cameras can capture 3D range data
for a wide field of view in real-time (≥ 30Hz). Therefore,
3D localization using 3D range data is expected to be popular
more and more in the near future.

In this paper, we propose a 3D localization technique using
a large-scale 3D environmental map measured by a 3D laser
scanner and a 3D range data captured by a RGB-D camera
on a mobile robot. Conventional 3D localization techniques
using 3D environmental information utilize a registration
method based on point-to-point correspondence such as Iter-
ative Closest Point (ICP) algorithm[5], [6], or voxel-to-voxel
correspondence such as occupancy voxel counting[11], [12].
However, these techniques are computationally expensive or
low accuracy due to the costly nearest point calculation or
the discrete voxel representation, and hard to be applied for
a global localization using a large-scale environmental map.

To tackle this problem, the proposed technique utilizes the
idea of NDT (Normal Distributions Transformation)[13] for
expressing a point distribution in a compact but information-
rich form. Firstly, point-clouds in an environmental map are
converted to the ND voxel representation. Then, to handle the
characteristics of point distribution more efficiently, represen-
tative planes called eigen planes are extracted and registered
as a new environmental map representation. Next, when a
mobile robot scans the surrounding environment using a on-
board RGB-D camera, an obtained 3D point-cloud is also
converted to the ND voxel representation and eigen planes
are extracted in a same way for the environmental map. In
addition, seven representative points (six sigma points and
a center point) are extracted and registered as additional
features. Finally, the similarities between the environmental
map and the measured data are examined based on plane-
and-plane and point-and-plane correspondences. Using the
obtained similarities, a particle filter is applied to find an
optimum position which shows the maximum similarity
between the environmental map and the measured data. In
addition to the technique mentioned above, we examine a
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statistical approach based on Kullback-Leibler divergence for
the similarity calculation of ND voxels in the environmental
map and the sensory data.

The NDT was originally proposed as an efficient align-
ment technique for two point-clouds[13]. It can reduce the
computational cost for the alignment drastically compared to
the ICP. On the other hand, the proposed technique focuses
on an another characteristic of the NDT, that is, the local
point distribution can be stored efficiently in a compact and
information-rich form. We utilize this characteristic for the
localization of a mobile robot with low calculation cost.

Since wide-range and high-resolution 3D spatial data will
be captured by a high-speed 3D sensor in the near future,
the high-speed processing of a large amount of 3D data is an
urgent challenge. The proposed technique enables to process
a large 3D environmental map consisting of more than ten
million 3D points and a 3D measured data with hundreds
of thousands of 3D points by RGB-D camera in realistic
processing time.

The reminder of the paper is organized as follows; After
describing related researches in Section 2, the details of the
proposed technique are introduced in Section 3. In Section
4, experimental results in an indoor corridor of 70 × 35 × 3
[m] are shown using a high resolution and precise 3D model
measured by a laser scanning robot[8] and a RGB-D camera
(Kinect, Microsoft).

II. RELATED WORKS

2D (x and y coordinates and yaw angle) localization using
a laser range finder or an ultrasound sensor is a standard tech-
nique for a mobile robot localization. In general, the obtained
cross-sectional range information is compared with a 2D
plane map which is measured and stored previously. 2D scan
matching using Maximum Likelihood method or Iterative
Closest Point (ICP) method, and Monte Carlo Localization
such as a particle filter are very popular techniques[14],
[15]. Konolige et al.[16] proposed a fundamental local-
ization technique using a maximum likelihood method. In
this method, by comparing a measured distance toward an
arbitrary direction and the distance to the nearest object along
this direction in an environmental map, the current position
is estimated as the position in which the sum of differences
is minimized.

On the other hand, owing to the recent development of
a 3D laser scanner and a RGB-D camera, 3D (x, y, z
coordinates and roll, pitch, yaw angles) localization is
becoming popular more and more. Nüchter et al.[5], [6]
applied the ICP method for sequential point-clouds measured
by a laser range finder and achieved 3D (or 6Dof) slam.

Wülfing et al.[17] proposed a 3D localization by compar-
ing a range data measured by a RGB-D camera and virtual
range data synthesized from 3D environmental model using
the ICP method. Fallon et al.[18] also proposed a similar
technique using Z-buffer and Monte Carlo localization. Some
researchers proposed a 3D localization by comparing 2D
range data measured by a 2D laser range finder and cross-
sectional shapes of a pre-scanned 3D environmental model

measured by a 3D laser scanner[9], [10]. Biswas et al.[19]
proposed a 2D localization using a RGB-D camera and a
2D map. In their method, plane segments are extracted from
a RGB-D image and the likelihood of robot location is
examined by comparing them with a 2D vector map.

On the other hand, direct comparison between 3D voxels
has also been presented so far. Olson et al.[11] proposed
a localization technique which compares the distribution of
occupancy voxels created by a stereo camera and a digital
elevation map, and determines a position candidate using the
shape correspondence by Most Likelihood method. Ryde et
al.[20] also proposed a similar localization technique based
on a multi-resolution occupancy voxels.

NDT[13] proposed by Biber et al. is an efficient regis-
tration technique which does not require a costly retrieval
of nearest points in the ICP method. Though the accuracy
is slightly lower than the ICP, the calculation cost can be
reduced drastically and it can converge from a wide range
of initial positions[21]. Magnusson et al. proposed a 3D lo-
calization of a mobile robot using NDT in a tunnel[22]. They
also proposed a loop detection technique using histograms
of local features obtained by NDT[23].

III. LOCALIZATION USING 3D ENVIRONMENTAL MAP
AND RGB-D CAMERA

This section introduces the proposed technique for robot
localization using a large-scale 3D environmental map and a
RGB-D camera.

A. 3D environmental map

We assume that a 3D geometrical model has been created
by a laser scanner such as the system proposed in [8].
This system is able to construct a large-scale 3D model
consisting of more than ten million 3D points by an on-
board laser range finder from multiple viewpoints. Firstly,
we convert this geometrical model to a discretized 3D map
which is constituted by a number of ND voxels[13] as shown
in Fig.1. ND voxel is a discrete representation of point-
clouds by approximating a point distribution with a multi-
dimensional normal distribution. To convert a point-clouds
to ND voxels, the average and the covariance matrix of the
point distribution are calculated and the eigen values and the
corresponding eigen vectors are extracted by the eigenvalue
decomposition. Then, in each ND voxel, a representative
plane named “eigen plane” is extracted. Eigen plane is a
small facet which has a normal vector toward the eigen vector
with minimum eigen value.

The geometrical model in Section IV consists of
40,000,000 points for an area of 70 × 35 × 3 [m] as shown
in Fig.2. After converted to the ND voxels with the size
of 800 [mm] on a side, we obtained the 3D environmental
map consisting of 50,000 voxels. The ND voxels and the
eigen planes are shown in Fig.3. During this process, we
also extract floor regions according to the directions of the
normal vectors of eigen planes and create a 2D floor map in
which the robot can move without the collision with walls
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NDT (Normal Distributions Transformation)

ND Voxel

Eigen planes

Measured points

3D normal distribution

Fig. 1. Concept of NDT and ND voxels[13]
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Fig. 2. Photo and 3D model of corridor

and static obstacles.These regions are used for initializing
and updating particles in a particle filter.

Note that to suppress the discretization error, we adopted
a similar technique with Biber’s one[13], that is, adjucent
voxels are overlapped each other so that the centers of voxels
are displaced with a half of the voxel size as shown in Fig.4.
As a result, every point in 3D space is involved with eight
adjacent voxels.

B. Measured data

In this paper, we focus on a localization problem for
a mobile robot equipped with a RGB-D camera such as
Microsoft Kinect shown in Fig.5. An example of a point-
cloud taken by a RGB-D camera in one shot is shown in
Fig.6. This point-cloud consists of 300,000 3D points.

To accelerate the localization process, we again apply the
NDT to this measured data and obtain ND voxels. Then, as
shown in Fig.7, six points (sigma points, see appendix) and
one center point of the normal distribution are extracted as
seven representative points in each ND voxel. In addition,
the eigen plane is also extracted in the same way as for
the environmental map. Note that adjacent ND voxels in the
measured data are also overlapped to suppress the effect of
discretization error.

C. Hierarchical ND voxels

As described above, the environmental map and the mea-
sured data are represented by overlapped ND voxels. There-
fore, if we would like to describe more complex shapes of the
environment, smaller size of voxels should be adopted, but

(a) Point-cloud data (b) Eigen planes

Fig. 3. Point-cloud data and eigen planes by RGB-D camera

Voxel
Overlap voxels

Fig. 4. Overlapped ND voxels

the computational cost will be increased. On the other hand,
if we use larger voxels, the processing speed will be faster
but the positioning accuracy will be reduced. Therefore, we
adopt hierarchical ND voxels consisting of different sizes of
voxels.The level of the voxel size is adjusted according to
the convergence of the position estimation.

D. Global positioning and tracking by particle filter

Global positioning and tracking are both performed by a
particle filter using the ND voxel representation for the en-
vironmental map and the measured data. Here, each particle
holds a candidate position t and orientation R of the robot,
and the likelihood of the particle is calculated according to
the following procedure (Fig.8).

Firstly, the position of the ND voxels in the measured
data, which is represented by a local coordinate frame,
are transformed according to the candidate position and
orientation in the particle and compared with the ND voxels
in the environmental map.

The score of each ND voxel is calculated in two ways, that
is, the simirality calculation using eigen planes and Kullback-
Leibler divergence.

1) Simirality calculation using eigen planes: The score
is calculated based on the distance from the seven repre-
sentative points in the measured data and the eigen plane in
the environmental map, and the angular difference of normal
vectors in both eigen planes as shown in Fig.9.

More concretely, suppose Sik = (Sikx, Siky, Sikz)
T as

the kth (k = 1 ∼ 7) representative point and Ni =
(Nix, Niy, Niz)

T as the normal vector of the eigen plane
in the measured data. The representative point S̃ik and the
normal vector of the eigen plane Ñi after the coordinate
transformation are given as

S̃ik = RSik + t (1)

Ñi = RNi (2)

Then, the overlapped ND voxel m (m = 1 ∼ 8)
in the environmental map which contains the transformed
representative point is selected, and the distance dik→m from
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Fig. 5. Mobile robot equipped with four RGB-D cameras (Kinect)

Fig. 6. Point-cloud data by a
RGB-D camera

Sigma points

Center point

Fig. 7. Seven representative
points

the representative point in the measured data to the eigen
plane of the voxel in the environmental map is calculated.

dik→m =| Nmx(S̃ikx − μmx) +Nmy(S̃iky − μmy)

+Nmz(S̃ikz − μmz) | (3)

Where Nm is the normal vector of the eigen plane and μm

is the center of the normal distribution in the ND voxel m
in the environmental map.

Finally, the score αik→m of the representative point S̃ik

is given as

αik→m =
1√
2πσd

e−d2
ik→m/σ2

d (4)

Where, σd is a parameter of the variance of the distance
dik→m.

In the same way, the score βi→m of the angular difference
of normal vectors in both eigen planes is given as

βi→m =| NmxÑix +NmyÑiy +NmzÑiz | (5)

Then, the score γik of the representative point Sik is
calculated as the maximum value of the product of the scores
αik→m and βi→m among the overlapped voxels.

γik = max
1≤m≤8

αik→mβi→m (6)

Next, by summing up the scores for seven representative
points, the final score δi of the voxel i in the measure data
are obtained.

δi =
7∑

k=1

γik (7)

Finally, the likelihood λ of the particle is calculated as the
sum of the scores in all voxels in the measured data.

λ =

W∑
i=1

δi (8)

Where, W is a number of voxels in the measured data.

Map data

Overlap ND voxel

Plane extruction

Measured data

Multi level
Overlap ND voxel

Point extruction
(Sigma and center points)

Plane extruction

Matching score

Evaluation of 
coincidence

Fig. 8. Flow of likelihood calculation

Point in 
measured data

Plane in map data

d

Plane in map data
Plane in measured data

β

Fig. 9. Evaluation of distance and orientation

2) Simirality calculation using Kullback-Leibler diver-
gence: In this method, the score of each ND voxel is
calculated according to the Kullback-Leibler divergence.

Suppose N (μi,Σi) is the normal distribution in the mea-
sured ND voxel Vi. Here, μ is the average of the points
in the ND voxel and Σ is the covariance matrix. Then, the
overlapped ND voxel Vm (m = 1 ∼ 8) in the environmental
map which contains the transformed center point μ̃i =
Rμi+t is selected. We denote the average and the covariance
matrix of the overlapped ND voxel as N (μm,Σm). The
Kullback-Leibler divergence between these ND voxels is
obtained as follows:

DKL(N (μi,Σi)||N (μm,Σm)) =
1

2

(
log(

detΣm

detΣi
)

+Tr(Σ−1
m Σi) + (μm − μi)

TΣ−1
m (μm − μi)− 3

)
(9)

Then, the score δi of the measured ND voxel is calculated
as the minimum value among the overlapped ND voxels of
the model.

δi = min
1≤m≤8

DKL(N (μi,Σi)||N (μm,Σm)) (10)

Finally, the likelihood λ of the particle is calculated as the
sum of the scores in all voxels in the measured data.

λ =
W∑
i=1

δi (11)

Where, W is the number of voxels in the measured data.
Note that the number of initial particles is 72,000 for

72 different directions at 1,000 points in 3D selected ran-
domly on floor regions. After the first iteration, the number
of particles is adjusted according to the KLD sampling
technique[24] from 1,000 to 5,000 adaptively.
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E. Scan matching using Maximum Likelihood method based
on beam model

The scan matching based on the Maximum Likelihood
method is a popular localization technique[11],[20]. In gen-
eral, the environmental map represented by a voxel map
and the measured distance by a range sensor are compared
directry.

Suppose the distance from a robot position s to a measured
point as r, and the distance from a robot position s to a
nearest obstacle in the environmental map along with the
same direction as r̄ in general. The observation probability
ps(r|r̄) (beam model) of the range sensor is given as shown
in Fig.10 [25].

By assuming the observation is independent, the robot
position is estimated by the maximum likelihood method as
the following equation.

argmax
s

p(s|r) = argmax
s

∏
i

ps(ri|r̄i) (12)

Where ri is the measured distance in ith observation.
This method can be extended for 3D voxel data. Suppose

the robot position as s and the measured point such as
the center of the voxel as rj . The estimated position can
be obtained by Eq.(12) if some voxels exist along the line
connecting s and ri and the center of the closest voxel is
given as r̄.

In addition, when we apply a particle filter to estimate
a robot position, the likelihood λ of each particle can be
defined as

λ =
∏
i

ps(ri|r̄i) (13)

In the experiments in Section IV, we adopted a simplified
model of Fig.10 as

ps(ri|r̄i) = 1√
2πσ

e−(ri−r̄i)
2/σ2

(14)

IV. LOCALIZATION EXPERIMENTS

Localization experiments were conducted using a mobile
robot shown in Fig.5. In this experiments, the robot moved
in a corridor of 70 × 35 × 3 [m] shown in Fig.2 while mea-
suring range data by a RGB-D camera (Kinect, Microsoft).
Two kinds of experiments were carried out.

1) Global positioning using single range data
2) Tracking using sequential range data and dead reckon-

ing information
The environmental map used in the experiments consists

of 51,395 ND voxels and the size of each voxel is 800[mm]

1

32

22

19

6

45

12

40

53

80

49

59

72

Fig. 11. Measuring positions for global positioning

on a side. On the other hand, the range data taken by the
RGB-D camera consists of 307,200 points and are converted
to 121 and 670 overlapped ND voxels of 1600 [mm] and
800 [mm] on a side, respectively.

A. Global localization experiments

Firstly, the robot captured an range image by the RGB-
D camera and estimated the current global position without
any knowledge about the position in the corridor shown in
Fig.2(c).

To compare the performance of the proposed and con-
ventional scan matching methods, we adopted the following
techniques for the calculation of the likelihood in the particle
filter.

1) Scan matching technique in Section III-E[11],[20]
2) Proposed technique using the ND voxels

In this experiment, we assumed that the robot is equipped
with an acceleration sensor and roll and pitch angles are
measured directly by this sensor. Thus each particle holds
four kinds of information (position x, y, z and orientation
yaw).

Firstly, the robot moved the corridor along the dotted line
in Fig.11. Then the robot stopped at 80 positions along the
line and captured 80 range images by the RGB-D camera.
Fig.11 shows the examples of the range and color images
and the positions where the robot captured the images. As
seen in this figure, quite similar range and color images are
taken in different positions in the corridor. Therefore, this
environment is quite difficult for the global localization since
perceptual aliasing tends to be happened frequently.

Next, the obtained range data was transformed to the
overlapped ND voxels with a size of 1600 [mm] on a side.
Then the global positions of 80 range images were estimated
“independently” by the particle filter. The number of initial
particles is 72,000 but it was decreased from 1000 to 5000
adaptively after the first iteration. The final position was
determined after four iterations by the particle filter as a
particle’s position with the highest likelihood.

Among the 80 positions, we determined that the position
was correctly estimated if the positioning error is less than
500 [mm] in x, y, and z directions and the orientation error
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TABLE I
CORRECTNESS OF GLOBAL POSITIONING

σ, σd [mm] 100 300 500 800 1000
Proposed (Sec. III-D.1) [%] 23.8 27.5 28.8 18.8 23.8
Proposed (Sec. III-D.2) [%] 16.3
Scan matching [%] 2.5 1.3 1.3 2.5 1.3

is less than 10 [deg.]. The correctness of the proposed and
the scan matching techniques (Section III-E) is compared in
Table I.

From Table I, it is clear that the correctness of the global
localization by the proposed technique using sigma planes
outperforms the ones by the Kullback-Leibler divergence and
the scan matching technique. This is partially due to the fact
that the point distribution in each voxel is considered and
evaluated efficiently by the overlapped ND voxel represen-
tation. On the other hand, the scan matching technique just
evaluates the distances between the centers of voxels, and the
point distribution is not taken into account. In addition, the
Kullback-Leibler divergence is calculated only for a voxel,
not overlapped ND voxels, in the map corresponding to a
ND voxel in measured data.

Note that, for the scan matching technique, we evaluated
the performance for various voxel sizes from 1600[mm] to
400[mm] on a side. The calculation time increased from 20
minutes to 8 hours, however, the correctness did not changed
so drastically.

The average of the total calculation time (Intel(R) Xeon(R)
CPU 2.67GHz Quad core 4GB) was 75.4 [sec.] for four
iterations of the particle filter. The processing time for the
likelihood calculation in one particle is 0.39 [msec.] for the
scan matching technique and 1.15 [msec.] for the proposed
technique, respectively. Since the overlapped ND voxels are
adopted in the proposed technique, eight voxels are always
evaluated for the likelihood calculation in each particle. The
correctness without the overlapped ND voxels is, however,
decreased from 28.8 % to 17.5 % in the case of σd =
500[mm].

B. Tracking experiments

Next, we carrid out the tracking experiments by combining
the proposed localization technique using eigen planes (Sec-
tion III-D.1) and the odometry information. Initial position
in the environmental map was determined by the global
localization mentioned above.

Firstly, the tracking result using the odometry information
is shown in Fig.13. It is clear that the tracking error is
gradually accumulated if only the odometry information is
available.

Next, we evaluated the tracking performance by combining
the proposed technique and the odometry information. At
first, the robot was placed in position 1 in Fig.11, then
the global position was estimated using the overlapped ND
voxel with 1600 [mm] on a side. After the initial position
was estimated, the size of the overlapped ND voxel was
changed to 800 [mm] and the robot position was tracked

Initial particles 1st movement

2nd movement 3rd movement

4th movement 12th movement

32th movement 40th movement

49th movement 59th movement

72th movement 80th movement
Fig. 12. Convergence of particles and estimated trajectory

with the particle filter consisting of up to 5000 particles.
The experimental results are shown in Fig.12.

Figure 13 shows the tracking paths estimated by the
proposed technique and the odometry information. Paths for
x, y, and z direction are shown in Fig.14. Especially, at
the beginning of the tracking, the proposed technique can
estimate the position more stable than the scan matching
technique since the ND voxels can provide richer information
such as sigma planes than the normal voxels. Moreover, it is
clear that the estimated height (z direction) of the robot by
the proposed technique is quite stable. Since the floor of the
environment was flat, the proposed technique identified the
robot position more stably.
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Fig. 13. Estimated trajectory by odometry and the proposed method
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Fig. 14. Comparison of estimated trajectories

Finally, the computational time of the position estimation
by the particle filter was 7.2 [sec.] on average (1379.3
particles, the size of ND voxel 800 [mm]) and 2.5 [sec.] on
average (1385.2 particles, the size of ND voxel 1600 [mm])
for Intel(R) Xeon(R) CPU 2.67GHz Quad core 4GB. Note
that, if we apply the ICP in Point Cloud Library[26] for two
range data (307,200 points) taken by the RGB-D camera, the
processing time was 118.5 [sec.] on average for one iteration
of each particle. Thus if we apply the ICP for 5000 particles,
unrealistic processing time such as 164 hours will be required
for ONE update by simple arithmetic.

V. CONCLUSIONS

The paper presented a global localization and tracking
techniques which can be performed in realistic processing
time using a large 3D environmental map consisting of more
than ten million 3D points and a 3D measured data with
hundreds of thousands of 3D points by a RGB-D camera.

Owing to an outstanding feature of the ND voxel repre-
sentation, that is, the ND voxel is able to express a point
distribution in a compact but information-rich form, the
proposed technique is able to evaluate the likelihood of the
estimated position efficiently with a small number of voxels
comparing point-clouds.

By combining the ND voxel representation and the particle
filter, the proposed technique is capable of performing global
localization and tracking in a large-scale 3D environmental
map and 3D range data in realistic processing time.

Future works include the development of more efficient
representation of point-clouds than the NDT, real-time pro-

cessing by implementing in a hardware, and comparison of
accuracy and computational time with state-of-the-art ICP
algorithms.
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APPENDIX

A sigma point is a point on a surface of an ellipse
representing a multi-dimensional normal distribution. If 3D
points are distributed according to a 3D normal distribution,
the existence probability of a point in a position xs is given
by

P (xs) = (2π det(Σ))−
1
2 exp(−1

2
(xs − μ)TΣ−1(xs − μ))

(15)
Where μ is a center of a point-cloud and Σ is a covariance
matrix. The position x in which the existence probability is r
(0 < r ≤ 1) times smaller than the probability at the center
position μ is given as

exp(−1

2
(x− μ)TΣ−1(x− μ)) = r (16)

(x− μ)TΣ−1(x− μ) = −2loger (17)

Suppose a point p on a surface of a sphere with a radius
of

√−2loger. The equation above can be expressed as

(x− μ)TΣ−1(x− μ) = pT p (18)

When the covariance matrix Σ is a non-singular matrix,
it can be decomposed with the matrixes of the eigen vectors
V and the eigen values D by the eigenvalue decomposition.

(x− μ)T (V DV T )−1(x− μ) = pT p (19)

(x− μ)T (V D− 1
2V TV D− 1

2V T )(x− μ) = pT p (20)

Therefore, since V is an orthonormal matrix, the position
x can be written as

D− 1
2V T (x− μ) = p (21)

x = V D
1
2 p+ μ (22)

x is a projected point on an ellipse with a covariance
matrix Σ from an arbitrary point p on a sphere with a
radius of

√−2loger. Therefore, by choosing the six surface
points on a sphere as (

√−2loger, 0, 0), (−
√−2loger, 0, 0),

(0,
√−2loger, 0), (0,−

√−2loger, 0), (0, 0,
√−2loger), and

(0, 0,−√−2loger), their corresponding points on an ellipse
called sigma points are obtained by the above transformation.
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