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Abstract— Global localization is a fundamental ability to
recognize the accurate global position for a mobile robot in
a revisited environment. The map-based global localization
gives a precise position by calculating an accurate transfor-
mation, but the comparison with large 3D data is quite time-
consuming. The appearance-based global localization which
determines the global position by image retrieval techniques
with similar structures is real-time. However, this technique
needs external illumination constraint and does not work in
the dark extremely. This paper proposes a combination of the
map-based global localization and the appearance-based global
localization. Instead of camera images used for the appearance-
based global localization, we utilize reflectance images which are
taken as a byproduct of range sensing by a laser range finder.
The proposed method not only detects previously visited scenes
but also estimate relative poses precisely. The effectiveness of
the proposed technique is demonstrated through experiments
in real environments.

I. INTRODUCTION
In some practical robotic tasks, the perceptual information

from external environment is unpredictable, unstructured and
uncontrolled. For instance, in an area struck by a strong
earthquake or by a mine disaster, the geometrical structure
differs from the original one because of grounds blocked by
a heap of rubble or collapsed walls. To accomplish a search
and rescue task efficiently in such an uncontrolled and un-
predictable environment, accurate mapping and localization
are fundamental capabilities.

Global localization, is a definition to accurately localize
a robot’s position in a global coordinate system using sur-
rounding features only given a map without any other prior
knowledge. Plenty of global localization techniques have
been proposed so far [11]. Abundant works have carried out
to attack this problem based on camera images captured in
constrained illumination environment, i.e. appearance-based
localization. other works utilizing laser range finder, i.e. map-
based localization mainly focused on 2D range data and can’t
estimate accurate relative poses.

The map-based global localization[1] is defined to find a
best position where the observed geometrical features match
the ones in the provided geometrical map. Though 3D range
data is preferable for 6D global localization in terms of
accuracy and reliability, the comparison between 3D range
data captured by a range sensor and pre-constructed 3D map
is quite time-consuming. On the other hand, the appearance-
based global localization using camera images[14],[15],[16]
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is simple and suitable for a real-time processing. How-
ever, the appearance-based global positioning can’t work in
dark or an environment where lighting condition changes
severely since illumination constraints is necessary for robust
appearance-based localization.

This paper proposes a two-steps strategy which combines
the map-based global localization and the appearance-based
global localization. By using reflectance image which are
taken as a byproduct of range sensing by a laser range
finder instead, the proposed technique is useful even in
the dark or an environment under severe lighting condition
thanks to the characteristic of the reflectance image which is
not subject to any severe variants of external illumination
conditions. Furthermore, fast and precise localization can
be done by comparing a few 3D range images which are
selected based on the similarity of the reflectance images.
The proposed two-steps strategy is as follows: i) reflectance
images retrieval system for rough estimation of a global
position based on Bag-of-feature technique, and ii) precise
global position is determined by Iterative Closest Points
algorithm for 3D range data automatically.

The remainder of this paper is organized as follows: after
brief introduction of related works in section II, section
III simply introduces cooperative positioning system which
the proposed method is based on. The proposed two-steps
strategy is presented in detail in section IV and V, and the
experimental results are shown in section VI.

II. RELATED WORK

Image-based visual SLAM (simultaneous localization and
mapping) has been reported in several literatures such as [2]
and [3]. The Bag-of-Features (BoF) is a popular technique
for efficient representation of a raw image captured by a
camera. Non-false-positive is achieved in [2] by combining
BoF and the probabilistic calculation. However, [2] requires a
constant illumination condition. Therefore the travel distance
of the robot has to be short enough so that the lighting
condition will not change drastically. In [3], the authors
didn’t evaluate the experimental results explicitly under large
changes of illumination. Extremely, both of them would fail
in the dark or the environment where the lighting is severely
changed.

A laser range finder which measures the distance from
the sensor to the surroundings is a popular device for
robot localization, map creation, and 3D modeling. When
we measure range by a laser range finder, the reflectivity,
which indicates the strength of the reflected laser, can be
obtained as a byproduct of range data. Note that all of the
pixels in the range image have corresponding reflectance
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values. In other words, the range image and the reflectance
image are precisely and fundamentally aligned. In addition,
the reflectance image is not subject to any severe variants
of external illumination conditions and thus we can obtain
stable reflectance images even at night.

The proposed technique utilizes the reflectance image
instead of a regular camera image. By applying BoF for
a reflectance image which corresponds to 3D range data,
the global localization using 3D range data and 2D images
is achieved efficiently. [4] utilizes reflection intensity from
a 1D laser range finder for localization in 2D space. On
the other hand, our technique utilizes 2D reflectance images
obtained by a 3D laser range finder for 3D localization. This
proposed technique is deterministic, so it doesn’t rely on
Markov assumption, in which the future state of the robot,
given the present and the past states, depends only on the
present state[13]. It also doesn’t encounter ”kidnapped robot
problem”[12], because its current state purely depends on
current sensor reading.

III. 3D MAP CREATION BASED ON COOPERATIVE
POSITIONING SYSTEM

For the map-based global localization, an environmental
map has to be created and provided beforehand. For precise
3D mapping of an environment around a robot, we have
been proposing an efficient and precise system named CPS-
SLAM [5], which can construct a quite accurate large-scale
3D map by a laser range finder and multiple robots based on
the technology for geographical surveying. This technique
has been used for the basis of Urban Search and Rescue
robot(USAR)[6].

Fig. 1. The 3D modeling robots, CPS-V

TABLE I
SICK LMS151

Measuring range 50[m]
Field of View 270[◦]

Precision ±30[mm]
Angular resolution 0.25[◦]

Figure 1 shows the fifth CPS-SLAM model named CPS-
V. This system consists of one parent robot and two child
robots. The parent robot is equipped with a highly precise
laser range finder (GPT-9000A, TOPCON LTD), a 2D laser
range finder(SICK LMS151), and a 3-axes attitude sensor.
On the other hand, two child robots are equipped with corner
cubes. The GPT-9000A and corner cubes are used for self-
positioning cooperatively as shown in Fig.2. The LMS151
(Table I) placed on a rotating table acquires two-dimensional
slit-like range data which are vertical to the ground. This
sensor can capture reflectance data at the same time. Thus
by rotating the table around the vertical axis for 360◦ while
scanning with the 2D laser range finder, 3D range data and
a 2D reflectance image are acquired. The number of pixels
on a reflectance image is exactly same as the number of
3D points in range data, i.e. there is one-to-one mapping
relationship between 2D pixels of the reflectance image and
3D points of the local 3D map.

Fig. 2. Cooperative Positioning System, CPS

Fig. 3. Construction of a large-scale 3D map by CPS

A. 3D global map

The process of mapping the entire field is displayed in
Fig.3. In each location, the parent robot collects a local
3D map and its measurement position based on the relative
observation between parent and child robots. In the end, all



Fig. 4. Reflectance and range images

of local 3D maps are aligned into a global 3D map using
measurement position information. More details about CPS-
based simultaneous localization and mapping (CPS-SLAM)
can be found in [5].

B. Reflectance images

As mentioned above, reflectance images are captured as
a byproduct of range sensing. Two examples of reflectance
image and its corresponding 3D data acquired by CPS-V
are shown in Fig.4. Note that each reflectance image has its
position information where the image is taken. These images
are used for the appearance-based global localization in the
proposed two-steps strategy.

C. Image retrieval using Bag-of-features

When the global 3D map of the target field is constructed,
a Kd-tree structure storing Bag-of-features(BoF) representa-
tions of reflectance images is also constructed at the same
time. Reflectance images are represented as histograms of
occurrence of the visual words in an image. Firstly, some
regions in feature space are mapped to visual words by
clustering all SURF[7] or SIFT[8] features extracted from
recorded images into representative words using k-means
clustering, the words are stored using Kd-tree structure. With
these words as x-axis, quantize each feature in a reflectance
image to its approximate nearest word by searching in Kd-
tree, all of recorded reflectance images are represented as
statistics of words( histograms ). Finally, the histograms of
all recorded images are stored also using Kd-tree structure. A
newly-captured image is also represented as a histogram and
the best M matching images for it are retrieved by quantizing
the histogram to its nearest M histograms.

IV. TWO-STEPS STRATEGY COMBINING
APPEARANCE-BASED AND MAP-BASED GLOBAL

LOCALIZATION
This section presents the two-steps strategy for precise

localization using a 3D map. Firstly, we need to create a
global map as a training dataset. As explained in Section
III, the CPS robots move in the environment and construct a
3D global map. At the same time, the parent robot collects
reflectance images at each measurement position. Then all
of reflectance images are represented using bag-of-features
(BoF) technique and the training dataset is created. Finally,
the dataset of all the BoF representations is stored in Kd-tree
which is efficient for information retrieval.

For global localization, a new robot which is equipped
with a 3D range sensor like CPS-V, is placed and collects
local 3D data and 2D reflectance images (test data). In the
1st step, we retrieve some candidates of initial location by
comparing stored reflectance images (training dataset) and
captured reflectance images (test data) using BoF and Kd-
tree. Then we apply 3D geometrical constraint to extract true
feature pairs and run automatic ICP in the 2nd step. Thanks
to the 1st step, fast and precise localization can be done in
the 2nd step by comparing a few 3D range images which are
selected based on the similarity of the reflectance images in
the 1st step.

Hereinafter, we denote variables related with training data
as ”Trm” or ”Dtr”, and variables related with test data as
”Ten” or ”Dte”. D means the 3D distance between two points
in a local 3D map. Train i.re f and Train i.pts represent the
ith reflectance image and local 3D map in training dataset.
Test j.re f and Test j.pts represent the jth reflectance image
and local 3D map in test dataset.

We will explain the proposed two-steps strategy in more
detail below. The entire process is shown in Fig.5

Fig. 5. Combination of appearance-based localization and map-based
localization.

A. 1st step: initial localization by Bag-of-features using 2D
reflectance images

All Test j.re f are converted into bag-of-features (BoF)
representations, and searched the best M matches in Kd-tree
previously constructed from the training dataset. Then the M
Train i.re f and Train i.pts are selected as M candidates of
the position of the robot in the 3D global map.



B. 2nd step: precise localization by Automatic ICP using 3D
data

With M candidate positions, automatic ICP[9][10] which
consists of two processes is applied for removing incorrect
candidates. But before applying automatic ICP, 3D geomet-
rical constraints are used for removing outliers for using
RANSAC as follows:

1) Rough alignment with RANSAC
a) Find corresponding features between Test j.re f

and Train i.re f .
b) Get the 3D coordinates of corresponding features

by Test j.pts and Train i.pts which correspond
to Test j.re f and Train i.re f respectively.

c) Remove outliers by 3D geometrical constraints.
This process will be explained in Section V.

d) 3D transformation between Test j.pts and
Train i.pts is estimated by RANSAC.

e) Align Test j.pts to Train i.pts.
2) Precise alignment with ICP

a) Run ICP[9] using Test j.pts and Train i.pts
which are already aligned roughly.

As a result of ICP, two metrics are defined for eval-
uating the accuracy of the alignment between Test j.pts
and Train i.pts. One is ”alignment ratio” and another is
”average error”. Firstly, we set a threshold of maximum
distance between a pair of 3D points in Test j.pts and
Train i.pts. Suppose Test j.pts has K points in total and
N of them can be found corresponding points in Train i.pts.
The ”alignment ratio” is defined by N/K. In those N pairs
of points, the sum of errors between every pair of points
divided by N is defined as ”average error”.

V. OUTLIER REMOVAL BY 3D GEOMETRICAL
CONSTRAINTS

Unlike color and undistorted images used in other works,
gray and distorted reflectance images don’t contain much
information. Therefore many false POMFs (Pair Of Matching
Features) between two reflectance images will be extracted.
In some cases, the number of false POMFs is larger than
true POMFs. As shown in Fig.6, there are only 4 true pairs
of matching features between Test 17.re f and Train 22.re f ,
their actual locations are shown in Fig.8. Since all the
features on the 2D reflectance images have their own 3D
positions in the 3D local map, geometric constraints such as
distance and a normal vector of a surface can be used for
extracting true POMFs. We propose a voting algorithm to
keep the true POMFs and remove the false POMFs by using
3D geometrical information. This process corresponds to the
step 1-c) in Section IV-B.

The 1st step of the voting algorithm is the outliers removal
by comparing the 3D distance between two POMFs (see
Algorithm 1). Dtr is the 3D distance between Trm and Trn,
and Dte is the 3D distance between Tem and Ten. If the
error between Dtr and Dte is below Dthresh, the scores of
two POMFs are increased by 1. In the end if the score of
POMF is below η × f actor1, this POMF is removed as an

Fig. 6. Corresponding features between Test 17.re f and Train 22.re f .
Left image shows all correspondences, Right image shows the correct
correspondences.

Fig. 7. 3D geometric constraint

outlier. In Fig.7, |AG| ̸= |A′G′|, |AH| ̸= |A′H ′|, and the red
points are removed by this step.

The 2nd step is the outliers removal by comparing edges
and normal vectors of triangles in 3D space. This is based
on a self-evident theorem: Given any three points in 3D
space, no matter where the (0,0,0)T of a local 3D map
is, the length of three edges are constant. In addition, the
angle between a normal vector and a unit vector vertical
to the ground (0,0,1)T is also constant. In Fig.7, α ,β ,θ ,
and ϕ are the angles between the normal vector of triangles
and the unit vector (0,0,1)T . △ADE, △A′D′E ′, △ADF , and
△A′D′F ′ have common POMFs AA′, DD′. |AD| ̸= |A′D′|,
|DE| ̸= |D′E ′| and |θ − ϕ | > ANGthresh; Another pair of
triangles △ABC ∼=△A′B′C′, α = β . In the end, if the scores
of POMFs DD′,FF ′ are smaller than ω × f actor2, they
are removed. POMFs AA′,BB′,CC′,EE ′ are kept. The blue
points are removed by this step. The green points are finally
kept as the input of RANSAC.

With the Algorithm 1, the outliers of POMFs between
reflectance images can be removed effectively. Many false
candidate features will be excluded by this voting algorithm.
Since a small number of reliable POMFs are remained, this



Algorithm 1 Voting algorithm
Suppose η POMFs extracted from Train i.re f and Test j.re f
for 0 ≤ m < η do

Get two 3D points (Trm and Tem) from m th feature.
for m+1 ≤ n < η do

Get another two 3D points (Trn and Ten) from n th feature

i f (|Dtr −Dte|< Dthresh) (1)

{score1[m]++;
score1[n]++;}

end for
end for
for 0 ≤ m < η do

i f (Score1 [m]< η × f actor1) (0 < f actor1 < 1) (2)

Delete the m th pair
end for
Suppose ω POMFs remained from above vote step
for 0 ≤ iteration < ω ×N do

Randomly select 3 POMFs for ω × N (N is a pre-defined
iteration number) times to form two triangles in 3D space
(Tr∆ and Te∆).

i f
(∣∣Tr∆edg −Te∆edg

∣∣< D∆thresh
)

(3)
i f (|T rDEG −T eDEG|< ANGthresh) (4)

{score2[m]++;
score2[n]++;
score2[k]++;}

end for
for 0 ≤ m < ω do

i f {score2 [m]< ω × f actor2} (0 < f actor2 < 1) (5)

Delete the m th pair
end for

can save retrieval time. The effectiveness of our method will
be shown in section VI.

VI. EXPERIMENT

An experiment is conducted to verify the proposed two-
steps strategy. The experimental field is shown in Fig.8. The
size of every reflectance image is 590× 569. The CPS-V
robots move and stop at different locations in experimental
fields for 58 times as the red path shown in Fig.8, i.e. 58 data
(Train i.re f and Train i.pts) are stored as training dataset.
On the other hand, test data (Test j.re f and Test j.pts) are
collected in 29 locations as the three colored paths shown in
Fig.8.

A. Results of position estimation after 1st step (coarse esti-
mation)

The results of location estimation after 1st step are listed in
Table II. In this experiment, M in Section IV-A is set to be 5,

Fig. 8. Experimental field

that is, 5 candidates for each Test i.re f are retrieved from the
training dataset by Kd-tree. All the positions of the robot are
correctly estimated and included in 5 candidate locations. In
25 positions, the positions of the robot are correctly estimated
as the first candidate. In 2 positions, the second candidates
are the actual locations. The remaining 2 positions are also
correctly estimated as third and fifth candidates, respectively.

TABLE II
CORRECTNESS OF POSITION ESTIMATION AFTER 1ST STEP

No. 1st 2nd 3rd 4th 5th Total Correctness ratio
Correct

localization 25 2 1 0 1 29 100%

TABLE III
CORRECTNESS OF POSITION ESTIMATION AFTER 2ND STEP

Total 29
Excluded by voting algorithm 5
Excluded by large ICP error 1

True positive 23

B. Results of position estimation after 2nd step (precise
estimation)

At first, Dthresh in Algorithm 1-(1) is set to be 3 [m]
according to the attribute of LMS151 shown in Table I,
f actor1 in (2) is 1/3, N is ω/2, D∆thresh of (4) is 1 [m], and
f actor2 of (5) is 1/3. The threshold of the average error for
terminating ICP is set to be 0.02[m] after 40 iterations of ICP.
Table III shows the results of the precise position estimation.
5 positions are not estimated correctly due to the failure in
the voting algorithm, i.e. the number of true 3D POMFs
between Train i.pts and Test j.pts is quite small. One false
localization is excluded by large average error of ICP. True
positive is 23 in total, so 23/29 ≈ 79.3% recall is achieved
and no-false-positive is obtained. Figure 10 shows the align-
ment results between Test 3.pts and Train 16.pts and results
between Test 21.pts and Train 36.pts after RANSAC and
automatic ICP. Table IV shows the average errors of their
results. These pairs are correctly selected in Step 1. Their
relative locations are displayed in Fig.8.



In the proposed method, the most time-consuming part is
ICP. The incorrect candidates can be excluded by the voting
algorithm. Since M is set to be 5 in the experiment, the
ICP should be executed for 29×5 = 145 times if the voting
algorithm is not applied. On the other hand, with the voting
algorithm, ICP is executed for only 37 times, that is, 37/29≈
1.28 times for each test data.

The proposed method is robust for the presence of moving
objects such as pedestrians or cars. Fig.9 shows the correct
POMFs on 2D reflectance images including several pedes-
trians and a car in the bottom image. It is clear that the
proposed method using BoF and outlier removal hardly be
influenced by these disturbances.

Fig. 9. The rectangles in the training image (lower) show the moving
objects which are not in the test image (upper).

TABLE IV
AVERAGE ERROR OF THE TWO EXAMPLES IN FIG.10

Example Coarse alignment Precise alignment
Train 16.pts and Test 3.pts 60.17[mm] 30.86[mm]
Train 36.pts and Test 21.pts 43.34[mm] 25.03[mm]

VII. CONCLUSION

This paper proposes and demonstrates the two-steps
strategy for global localization of a mobile robot. The
appearance-based global localization and the map-based
global localization are combined for improving the per-
formance of correct position estimation. The reflectance
image which is taken as a byproduct of range sensing and
invariant to the change of illumination condition is utilized
for the appearance-based global localization in the 1st step.
Then the precise map-based global localization by ICP is
applied using 3D local maps which are selected by the
1st step. To improve the performance of the 2nd step, the

voting algorithm based on the 3D geometrical constraints
and RANSAC-based course position estimation process are
proposed. The effectiveness of the proposed technique is
demonstrated through experiments in real environments.
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(a) Original maps of Train 16.pts and Test 3.pts (b) Coarse alignment by RANSAC between
Train 16.pts and Test 3.pts

(c) Precise alignment by ICP between Train 16.pts
and Test 3.pts

(d) Original maps of Train 36.pts and Test 21.pts

(e) Coarse alignment by RANSAC between Train 36.pts
and Test 21.pts

(f) Precise alignment by ICP between Train 36.pts and
Test 21.pts

Fig. 10. Alignment Results between the 16th test data and 3th training data, 21th test data and 36th training data
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