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Abstract
This paper presents a new registration algorithm of a

2D image and a 3D geometrical model, which is robust for
initial registration errors, for reconstructing a realistic 3D
model of indoor scene settings. One of the typical tech-
niques of pose estimation of a 3D model in a 2D image is
the method based on the correspondences between 2D pho-
tometrical edges and 3D geometrical edges projected on the
2D image. However, for indoor settings, features extracted
on the 2D image and jump edges of the geometrical model,
which can be extracted robustly, are limited. Therefore, it is
difficult to find corresponding edges between the 2D image
and the 3D model correctly. For this reason, in most cases,
the relative position has to be manually set close to correct
position beforehand. To overcome this problem, in the pro-
posed method, firstly the relative pose is roughly estimated
by utilizing geometrical consistencies of back-projected 2D
photometrical edges on a 3D model. Next, the edge-based
method is applied for the precise pose estimation after the
above estimation procedure is converged. The performance
of the proposed method is successfully demonstrated with
some experiments using simulated models of indoor scene
settings and actual environments measured by range and
image sensors.

1. Introduction
This paper deals with the problem of pose estimation of

a 3D geometric model in a 2D image for creating a realis-
tic 3D model of indoor scene settings. Several registration
techniques of a 2D image and a 3D geometric model have
been proposed so far. One of the typical techniques is the
method based on the correspondence of 2D photometrical
edges and projected 3D geometrical edges on the 2D im-
age. However, for indoor settings, features extracted on the
2D image and jump edges of the geometrical model, which
can be extracted robustly, are limited. Therefore, it is diffi-
cult to find corresponding edges between the 2D image and
the 3D model correctly. For this reason, in many cases, the
relative position has to be manually set close to correct po-
sition beforehand, since it is likely to get stuck into local
minimums if an initial registration error is large.

In this paper, a new registration algorithm of a 2D im-
age and a 3D geometric model is proposed. The proposed
method is able to estimate optimum pose of 3D model in 2D
image robustly against initial registration error. In general,

most of urban or indoor scene settings consist of multiple
planar surfaces, and these planar surfaces and their intersec-
tion lines have some geometrical relations with other planar
surfaces and intersection lines, respectively. While most of
conventional methods proposed so far utilize 2D photomet-
rical edges and projected 3D geometrical edges on the 2D
image, the proposed method evaluates geometrical consis-
tencies of back-projecting 2D photometrical edges on the
3D model. By utilizing geometrical properties, such as lin-
earity, parallelism, and orthogonality, the relative pose can
be robustly estimated even if an initial registration error is
large.

The proposed method consists of two registration algo-
rithms, one is based on geometrical consistency of artifi-
cial 3D scene settings [3, 11] and the other is based on
correspondences between 2D photometrical and 3D geo-
metrical edges [6]. Firstly, the geometrical consistency-
based registration method is applied for determining rela-
tive pose robustly against an initial registration error. Next,
for the precise pose estimation, the edge-based registration
method is applied after the geometrical consistency-based
registration method is converged. The performance of the
proposed method is successfully demonstrated with some
experiments using simulated 3D geometrical models of in-
door scene settings and actual environments measured by
range and image sensors.

2. Related work
For the precise alignment of 2D images and 3D geo-

metrical models, Kurazume [6] proposed the simultane-
ous registration algorithm using 2D texture images and re-
flectance images, which are provided as a side product of
range images by most of Time-of-Flight range sensors. In
this method, a number of photometrical edges extracted
from a texture and a reflectance images are registered and
the relative pose between them is determined using robust
M-estimator. Epipolar constraints are also utilized to esti-
mate relative poses of multiple texture images simultane-
ously. Elstrom [4] also used extracted feature points in
reflectance images and texture images by a corner detec-
tor, and determines correspondence between these feature
points. Umeda [16] also utilizes the reflectance image, but
this method introduces the optical flow constraint between
the reflectance image and the texture image. Intrinsic and
extrinsic parameters are determined using the least squares



method.
Other than the methods using reflectance images, some

registration techniques using silhouette images or contour
lines in 2D image plane have been proposed. Lensch [9],
[8], [10] proposed a silhouette-based approach. The size of
XOR regions of silhouette image of a 2D image and a pro-
jected 3D model is defined as the similarity measure, and
the optimum pose which minimizes the size of the XOR
regions is determined using the Downhill Simplex method.
Brunie [1] and Lavallee [7] utilize a pre-computed 3D dis-
tance map of a free form object for 3D pose estimation. The
error metric is defined as the minimum distance between the
surface of the 3D model and a projection ray, and the sum
of the error is minimized using the Levenberg-Marquardt
method. To make the registration process efficiently, 3D
distance from the surface is pre-computed and stored by the
octree structure. Zuffi [17] applies this algorithm for the
pose estimation of a knee joint in a single X-ray image for
total knee replacement surgery. In the contour-based ap-
proach, the error is computed as the sum of distances be-
tween points on a contour line in a 2D image and on a pro-
jected contour line of a 3D model [2], [13], [14]. Iwashita
[5] proposed the fast alignment algorithm utilizing a 2D dis-
tance map constructed by Level Set Method. However, fea-
tures extracted from a 2D image or a 3D model are limited
in the indoor settings, and it is likely to get stuck into local
minimums if an initial registration error is large.

Liu [12] proposed a registration algorithm aimed at ur-
ban scene objects. This method is based on the corre-
spondences of 3D geometrical edges and 2D photometrical
edges, but it is likely to get stuck into local minimums in
the case that an initial registration error is large. In [15],
relative positions between image and range sensors are es-
timated roughly using vanishing points on 2D images, and
the optimum pose is estimated by comparing 2D photomet-
rical edges and 3D geometrical edges projected on the 2D
image. However, to estimate vanishing points stably, plenty
of parallel lines have to be extracted from the 2D image.
Therefore, this method is not suitable for urban environ-
ments in which enough number of parallel lines can not be
extracted, such as indoor scene settings consisting of a few
number of planes.

3. New 2D-3D registration algorithm using ge-
ometrical consistencies

In this section, we propose a new registration algorithm
of a 2D image and a 3D geometric model which can esti-
mate optimum pose robustly against initial registration er-
ror. Hereafter we assume that a 3D geometric model of a
scene is constructed and represented by a number of small
triangular patches. Intrinsic parameters of an image sensor
are also calibrated precisely.

The proposed procedure is summarized as follows:

1. 2D photometrical edges in the 2D image are extracted
by feature detectors such as Canny operator.

2. Straight lines and planar surfaces in the 2D image are
determined from 2D photometrical edges extracted in
step 1.

3. The 3D geometric model is placed at an arbitrary po-
sition.

4. Straight lines and planar surfaces are back-projected
to the 3D model using the updated parameters of the
relative position.

5. Patches of the 3D model on which the straight lines
and planar surfaces are back-projected are identified
and their 3D positions are calculated by utilizing the
high speed rendering function of the OpenGL hard-
ware accelerator.

6. The evaluated value of the geometrical consistencies
is calculated and the relative position between the 2D
image and the 3D model is estimated using steepest
descent method or conjugate gradient method.

7. Step 4 ∼ 6 are repeated until the evaluated value con-
verges.

8. The precise pose is estimated using the edge-based
method, which is the method based on the correspon-
dences between 2D photometrical edges and projected
3D geometrical edges on the 2D image.

Step 3∼ 7 and Step 8 show the geometrical consistency-
based and edge-based registration method, respectively.
The above procedure is explained in more details with some
examples in the following sections.

3.1. Registration method based on geomet-
rical consistencies

3.1.1 Detection of straight lines and planar surfaces.

Straight lines and planar surfaces in the 2D image are ex-
tracted from 2D photometrical edges(Fig.1(a)). Firstly,
straight lines are determined with Hough transform or op-
erator’s instruction. Next, to determine planar surfaces, a
distance map is constructed, which indicates the distance
from a pixel in the 2D image to the nearest 2D photometri-
cal edge(Fig.1(b)). By binarizing the distance image with a
proper threshold, regions which are far from edges are ex-
tracted as planar surfaces(Fig.1(c).

3.1.2 Geometrical consistencies.
In this section, the evaluated value of the geometrical con-
sistencies is explained. The evaluated value indicates the
degree of fitness of the geometrical consistencies defined

(b) Distance image (c) Binary image(a) Extracted photometrical edges

Figure 1. Detection of planar surfaces.



for the back-projected 2D edges on the 3D model. Specifi-
cally, this value is defined as the linear sum of the following
three evaluated values in this paper.

• Linear consistency
• Planar consistency
• Parallel and orthogonal consistencies

The definitions of these consistencies are explained in more
details.
• Linear consistency

In most cases, a 2D straight line in the 2D image can
be regarded as the projection of a 3D straight line in
the 3D model. Thus, if the 2D image is aligned to the
3D model precisely, the patches of the 3D model on
which the 2D straight line are back-projected should
be aligned along a straight line in 3D space. How-
ever, if these patches are involved in two different pla-
nar surfaces, the back-projected 2D straight line is di-
vided into two straight lines on the 3D model. This is
inconsistent with the fact that a 2D straight line corre-
sponds to a single 3D straight line in 3D space (Fig.2).
Therefore, by evaluating the degree of the straightness
of these 3D patches, the correctness of the 2D-3D reg-
istration can be estimated. In this paper, we define this
condition as the linear consistency.

Under the relative position between the 2D im-
age and 3D model (R, t), the covariance ma-
trix of the 3D positions of the patches of the
back-projected straight line SLi (0 ≤ i <
Numsl, Numsl is the number of detected straight
lines.) and eigenvalues of the covariance matrix
are calculated. Here, three eigenvalues are de-
fined as λmin( i ;R, t), λmed( i ;R, t), λmax( i ;R, t)
(0 < λmin( i ;R, t) < λmed( i ;R, t) <
λmax( i ;R, t)), and eigenvectors are defined as
Xmin( i ;R, t), Xmed( i ;R, t), Xmax( i ;R, t), re-
spectively. Xmax( i ;R, t), Xmed( i ;R, t), and
Xmin( i ;R, t) indicate the directions corresponding
to the maximum, medium, and minimum variances,
respectively. Therefore, the smaller the λmin( i ;R, t)
and λmed( i ;R, t) are, the higher the possibility that
the back-projected straight line is aligned along a
straight line is.

Thus, the linear consistency is defined as the following
equation.

Elinearity(R, t) =
∑

0≤i<Numsl

λmin( i ;R, t)

+
∑

0≤i<Numsl

λmed( i ;R, t) (1)

Xmax( i ;R, t) is the directional vector of the approx-
imated 3D line of the back-projected straight line SLi

in 3D space.
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Figure 2. Linear consistency.

• Planar consistency
In case that the patches on which a planar surface in
the 2D image is back-projected are involved in a single
planar surface, these patches are aligned evenly on the
3D model. However, if these patches are involved in
two different planar surfaces, the back-projected pla-
nar surface in the 2D image is divided into two planar
surfaces on the 3D model. This is inconsistent with
the fact that a 2D planar surface corresponds to a sin-
gle 3D planar surface in 3D space (Fig.3). Therefore,
in the same way as the linear consistency, by evaluat-
ing the degree of the smoothness of these 3D patches,
the correctness of the 2D-3D registration can be esti-
mated. In this paper, we define this condition as the
planar consistency.

In order to evaluate the planar consistency, the co-
variance matrix of the 3D positions of the patches of
the back-projected planar surface PSk (0 ≤ k <
Numps, Numps is the number of detected planar
surfaces.) and eigenvalues of the covariance matrix
are calculated. Here, three eigenvalues are defined
as µmin( k ;R, t), µmed( k ;R, t), µmax( k ;R, t)
(0 < µmin( k ;R, t) < µmed( k ;R, t) <
µmax( k ;R, t)), and eigenvectors are defined as
Ymin( i ;R, t), Ymed( i ;R, t), Ymax( i ;R, t), re-
spectively. Ymax( i ;R, t), Ymed( i ;R, t), and
Ymin( i ;R, t) indicate the directions corresponding
to the maximum, medium, and minimum variances, re-
spectively. Therefore, the smaller the µmin( k ;R, t)
is, the higher the possibility that back-projected planar
surface is aligned on a planar surface in the 3D model
is.

Thus, the planar consistency is defined as the following
equation.

Eplanarity(R, t) =
∑

0≤k<Numps

µmin( k ;R, t) (2)

Ymin( i ;R, t) is the normal vector of the approxi-
mated 3D planar surface of the back-projected planar
surface PSk in 3D space.

• Parallel and orthogonal consistencies
Parallel and orthogonal consistencies are defined for
straight lines and planar surfaces, respectively. In in-
door environments, two planar surfaces are usually lo-
cated in parallel or orthogonal, and thus 2D straight
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Figure 3. Planar consistency.

lines and 2D planar surfaces have parallel or orthogo-
nal relations with each other in 3D space, respectively.
In case that the relative position between image and
3D model is estimated precisely, two back-projected
2D straight lines and two back-projected 2D planar
surfaces on the 3D model have parallel or orthogonal
relations in most cases. On the other hand, in case
that the relative position between them is not estimated
correctly, neither parallelism nor orthogonality are sat-
isfied for the back-projected 2D straight lines and 2D
planar surfaces on the 3D model (Figs.4 and 5). There-
fore, by evaluating the degree of the parallelism or or-
thogonality of the 3D patches on which the 2D straight
lines and 2D planar surfaces are back-projected, the
correctness of the 2D-3D registration can be estimated.
In this paper, we define these consistencies as the par-
allel and orthogonal consistencies of straight lines and
planar surfaces.

Firstly, the parallel and orthogonal consistencies of
straight lines are defined by calculating the eigenvec-
tor Xmax( i ;R, t) and Xmax( j ;R, t) of the back-
projected straight lines SLi and SLj (i > j) as the
following equations.

ElineParallelity(R, t) =∑
i>j

pij

∥∥Xmax( i ;R, t)×Xmax( j ;R, t)
∥∥(3)

ElineOrthogonality(R, t) =∑
i>j

qij

∣∣(Xmax( i ;R, t) ·Xmax( j ;R, t)
)∣∣ (4)

Here, pij and qij (0 ≤ pij , qij ≤ 1) indicate the possi-
bility that the relation between back-projected straight
lines SLi and SLj has parallel or orthogonal condi-
tions. In case that pij = 1 or qij = 1, two back-
projected straight lines have parallel or orthogonal re-
lations, respectively.

Next, the parallel and orthogonal consistencies of pla-
nar surfaces are defined by calculating the eigenvec-
tor Ymin( k ;R, t) and Ymin( l ;R, t) of the back-
projected planar surfaces PSk and PSl (k > l) as the
following equations.

EplaneParallelity(R, t) =∑
k>l

p′kl

∥∥Ymin( k ;R, t)×Ymin( l ;R, t)
∥∥(5)

EplaneOrthogonality(R, t) =∑
k>l

q′kl

∣∣(Ymin( k ;R, t) ·Ymin( l ;R, t)
)∣∣(6)

Here, p′kl and q′kl (0 ≤ p′kl, q
′
kl ≤ 1) indicate the pos-

sibility that the relation between back-projected planar
surfaces PSk and PSl has parallel or orthogonal con-
ditions. In case that p′kl = 1 or q′kl = 1, two back-
projected planar surfaces have parallel or orthogonal
relations, respectively.
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Figure 4. Parallel and orthogonal consisten-
cies of straight lines.
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Figure 5. Parallel and orthogonal consisten-
cies of planar surfaces.

3.1.3 Estimation of relative position and parallel and
orthogonal conditions.

The relative position of the 2D image and the 3D model
is estimated by minimizing an evaluated value E, which is
defined as a linear sum of the evaluated values for the lin-
ear, planar, parallel and orthogonal consistencies shown in
Eqs.(1) ∼ (6).
E(R, t) = Elinearity(R, t) + α1ElineParallelity(R, t)
+α2ElineOrthogonality(R, t) + α3Eplanarity(R, t)
+α4EplaneParallelity(R, t) + α5EplaneOrthogonality(R, t)

(7)

In addition to the above procedure, it is possible to esti-
mate the parallel and orthogonal conditions at the same
time by the following procedure. Firstly, P = {pij}i>j ,
Q = {qij}i>j , P′ = {p′kl}k>l, and Q′ = {q′kl}k>l are re-
garded as unknowns, and Eqs.(3) ∼ (6) are redefined as the
following equations.

ElineParallelity (R, t,P) =∑
i>j

pij

∥∥Xmax( i ;R, t)×Xmax( j ;R, t)
∥∥ + c1

∑
i>j

(1.0− pij)

ElineOrthogonality(R, t,Q) =



∑
i>j

qij

∣∣(Xmax( i ;R, t) ·Xmax( j ;R, t))
∣∣ + c2

∑
i>j

(1.0− qij)

EplaneParallelity(R, t,P′) =∑
k>l

p′kl

∥∥Ymin( k ;R, t)×Ymin( l ;R, t)
∥∥ + c3

∑
k>l

(1.0− p′kl)

EplaneOrthogonality(R, t,Q′) =∑
k>l

q′kl

∣∣(Ymin( k ;R, t) ·Ymin( l ;R, t))
∣∣ + c4

∑
k>l

(1.0− q′kl)

(8)

where c1 ∼ c4 are constants. By adding the new term to
Eqs.(3) ∼ (6) and minimizing Eq.8, pij , qij , p′kl, and q′kl

converge to 0 or 1 after iterative estimation. Therefore the
evaluated value E is defined as follows:
E(R, t,P,Q,P′,Q′) = Elinearity(R, t)
+α1ElineParallelity (R, t,P) + α2ElineOrthogonality(R, t,Q)
+α3Eplanarity(R, t) + α4EplaneParallelity (R, t,P′)
+α5EplaneOrthogonality(R, t,Q′) + α6ElinePenalty(P,Q)
+α7EplanePenalty(P′,Q′) (9)

where α1 ∼ α7 are constants, and ElinePenalty and
EplanePenalty are additional constraints that two straight
lines or two planar surfaces have never parallel and orthog-
onal relations with each other at the same time. These
terms are defined as ElinePenalty(P,Q) =

∑
i>j pijqij

and EplanePenalty(P′,Q′) =
∑

k>l p′klq
′
kl, respectively.

At the beginning of the estimation process, parallel and or-
thogonal conditions are set to pij = qij = p′kl = q′kl = 0.5
as the initial values, and are estimated using intermediate
parameters mij , nij , m

′
kl, n′

kl as follows:

mij,t = mij,t−1 − ∂E

∂pij
nij,t = nij,t−1 − ∂E

∂qij

m′
kl,t = m′

kl,t−1 −
∂E

∂p′kl

n′
kl,t = n′

kl,t−1 −
∂E

∂q′kl

(10)

where t is the iteration number of convergent calculation,
and pij , qij , p′ij , and q′ij are defined by the sigmoid function.

pij =
1

1 + e
−mij

ST

qij = 1

1+e
− nij

ST

p′kl =
1

1 + e
−m′

kl
ST

q′kl = 1

1+e
−

n′
kl

ST

(11)

where ST is a constant of the sigmoid function. By using
the sigmoid function, the range of pij , qij , p′kl and q′kl can
be limited from 0 to 1. In our implementation, we minimize
the evaluated value E in Eq.(9) by steepest descent method
or conjugate gradient method.

3.2. Precise registration based on edge cor-
respondences

After the geometrical consistency-based registration is
converged, the edge-based registration is applied from the

estimated relative position. The edge-based registration is
based on correspondences between 2D photometrical and
3D geometrical edges [6]. In this method, photometrical
and geometrical edges extracted from a texture image and
a 3D geometric model are registered and the relative po-
sition is estimated so that these edges coincide with each
other. In our implementation, we use straight lines defined
in section 3.1 as photometrical edges and geometrical edges
are extracted by detecting intersection lines between planar
surfaces.

First, geometrical edges are projected to the texture im-
age as shown in Fig.6, and nearest photometrical edges from
geometrical edges are searched by using the k-D tree struc-
ture. Then, the evaluated value Ede is defined as the fol-
lowing equation using the distance di[pixel] between these
edge points. We define this value as the distance error.

Ede(R, t) =
∑Numde

i di

Numde
(12)

where Numde is the number of the projected geometrical
edge points to the texture image.

To update parameters of the relative position between the
2D image and the 3D model, a force fi is applied to the
geometrical edge point P. The force fi is the vector which
is on a perpendicular line from the geometrical edge point
P to the stretched line between the optical center and the
photometrical edge point. Using the force fi, current pose
R and position t are updated as follows:

R ← R + α

Numde∑
i

fi × (P−G)

t ← t + β

Numde∑
i

fi (13)

where α and β are constants, and G is the center of gravity
of the 3D model. These procedures are repeated until the
distance error Ede converges.
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Figure 6. Distance error between the photo-
metrical and geometrical edges.

4. Experiments
In this section, we show some experimental results of the

2D-3D registration using a simulated 3D model and actual
environments measured by range and image sensors. In the
simulation, we focus on the convergence performance of



the proposed method against local minimums and do not
consider the effect of noise on observations.

4.1. Comparison of the accuracy of geo-
metrical consistency-based and edge-
based registration methods

Firstly, we examined the change of the evaluated val-
ues of the geometrical consistencies(Eq.(7)) and the dis-
tance error(Eq.(12)) for various relative positions between
image and 3D models. Here, the parallel and orthogo-
nal conditions of straight lines and planar surfaces are as-
sumed to be known. The simulated 3D model shown in
Fig.7 (a) is an indoor environment which is 5.0 meters
high, 15.0 meters width, and 10.0 meter depth, and Fig.7
(b) shows the 2D image obtained by capturing the tex-
tured 3D model. In these experiments, the pose and po-
sition errors between the 2D image and the 3D model are
set to (θroll, θpitch, θyaw)[degree] and (tx, ty, tz)[m], where
−30 ≤ θ ≤ 30 and −3 ≤ t ≤ 3.

Figure 8(a) shows the evaluated values and Fig.8(b)
is a close up of Fig.8(a) around the correct po-
sition. The horizontal axis indicates the pose er-
ror (±

√
θ2

roll + θ2
pitch + θ2

yaw) and position error

(±
√

t2x + t2y + t2z), and the left and right vertical axes
indicate the evaluated value E of the geometrical con-
sistencies and the distance error Ede, respectively. From
Fig.8(a), though the distance error Ede has many local
minimums, we can see the evaluated value E is decreasing
almost monotonically to the correct position. This means
that in the case that an initial registration error is large,
the relative position between the 2D image and the 3D
model can be estimated more robustly by the geometrical
consistency-based registration method comparing with the
edge-based registration method. On the other hand, as
shown in Fig.8(b), the distance error converges steeply
around the correct position, while the evaluated values
E converges gradually. This indicates the edge-based
registration method is more suitable for the precise align-
ment than the geometrical consistency-based registration
method. From these consideration, we can conclude that
the proposed method which combines these two methods
has both properties of robustness for initial registration
error and high accuracy for precise registration.

(b) 2D image(a) Simulated 3D model

Figure 7. 3D geometrical model and its tex-
tured image.
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Figure 8. Comparison of evaluated value of
Eqs.7 and 12.

4.2. Evaluation of robustness against initial
registration errors

4.2.1 2D-3D registration in case that parallel and or-
thogonal conditions are known.

Next, we conduct the 2D-3D registration experiments using
the simulated 3D model on the condition that the parallel
and orthogonal relations of straight lines and planar surfaces
are known. The performance of the convergence of three
methods, that is, the geometrical consistency-based regis-
tration method, the edge-based registration method, and the
proposed method, is compared. In these experiments, the
initial position is changed 100 times in a random manner.
The maximum values of the initial registration errors are
2 meters and 20 degrees for each axis. Figure 9 shows
the distribution of the frequencies of position and orien-
tation errors after convergent calculation by the geometri-
cal consistency-based registration method, the edge-based
registration method, and the proposed method. Examples
of the experimental results with the edge-based registration
method and the proposed method are shown in Figs.10 and
11.

As seen in these results, the edge-based registration
method estimates the relative position between the 2D im-
age and the 3D model precisely if the relative position is
converged to the correct position. However, in the case
that the initial position is far from the correct position, it
is likely to get stuck into local minimums. On the other
hand, though the accuracy of the geometrical consistency-
based registration algorithm is lower than the edge-based
registration method, the possibility of local minimums of
the proposed method is lower than the edge-based regis-
tration method. In the proposed method, the geometrical-
based method could estimate the relative position close to
the correct position firstly, and then the edge-based method



was applied for the precise pose estimation from the ini-
tial position estimated by the geometrical-based method.
Hence the proposed method estimated the relative position
precisely, and the success rate in which the distance error
becomes under 1.5 [pixel] is 96.0 %.

(a1) Orientation error (a2) Position error

(a) Geometrical consistency-based registration algorithm

(b) Edge-based registration algorithm
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Figure 9. Distribution of the frequencies after
convergence.

3D geometrical edge

2D image

Figure 10. 2D-3D registration with the edge-
based registration method only.

4.2.2 2D-3D registration in case that parallel and or-
thogonal conditions are also estimated.

We conduct the experiments to estimate the parallel or or-
thogonal conditions of straight lines and planar surfaces au-
tomatically by minimizing the evaluated value E detailed in
Eq.(9).

Figure 12 shows the distribution of the frequencies of
position and orientation errors after convergent calculation
by the proposed method. The success rate in which the dis-
tance error becomes under 1.5 [pixel] is 75.0 %. Figure 13
shows examples of the estimated results of the parallel and
orthogonal conditions. These results show that the parallel
and orthogonal conditions are estimated correctly. For all of
the straight lines, the success rates of the estimation of the
parallel and orthogonal conditions are 85.7 % and 83.5 %,
respectively. For all of the planar surfaces, the success rates
are 100.0 %.

Edge-based registration

Geometrical consistency-based registration

3D geometrical edge

2D image

Figure 11. 2D-3D registration with the pro-
posed method.
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Figure 12. Distribution of the frequencies af-
ter convergence.

4.3. 2D-3D registration using actual models
Finally, we carry out an experiment of 2D-3D regis-

tration using an actual environment measured by a range
sensor (SICK, LMS200) and an image sensor (FUJIFILM,
FinePix). In this experiment, the condition of parallel and
orthogonal relations are assumed to be unknown and esti-
mated. Figures 14 (a) and 14 (b) show the actual 3D ge-
ometrical model of a room and its corresponding 2D im-
age. Figure 14 (c) shows the experimental results of esti-
mation of relative pose between the 2D image and the 3D
model. From these experiments, we can conclude that that
2D-3D registration is performed successfully for actual en-
vironments.

5. Conclusion
This paper proposed a new registration algorithm of a

2D image and a 3D geometrical model for creating real-
istic 3D model of indoor scene settings. In this method,
firstly the relative position between the 2D image and the
3D model is estimated utilizing geometrical consistencies
of back-projected 2D photometrical edges on the 3D model.
Next, the edge-based method is applied after the geometri-
cal consistency-based registration method is converged for
the optimum pose estimation.

Our registration algorithm realizes the robust estimation
of relative position between the 2D image and the 3D model
against initial registration errors. This method works well
even if the features extracted from a 2D image or a 3D
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Figure 13. Estimation of parallel and orthog-
onal conditions of straight lines and planar
surfaces.

model are limited such as for indoor environments. The
relevance of the proposed method was verified through the
experiments using simulated 3D models of indoor scene set-
tings and actual environments measured by image and range
sensors.
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