2 視点からの X 線投影像を用いた大腿骨形状の 3 次元復元 - 実 X 線投影像を用いた復元実験 -

中村かほり(九州大学) 倉爪亮(九州大学) 岩下友美(九州大学) 岡田俊之(大阪大学) 佐藤嘉伸(大阪大学) 菅野伸彦(大阪大学) 長谷川勉(九州大学)

3D Reconstruction of Femoral Shape Using Two 2D Radiographs - Experiments Using radiographs of living bodies -

*Kahori NAKAMURA (Kyushu University), Ryo KURAZUME (Kyushu University), Yumi IWASHITA (Kyushu University), Toshiyuki OKADA (Osaka University), Yoshinobu SATO (Osaka University), Nobuhiko SUGANO (Osaka University), Tsutomu HASEGAWA (Kyushu University)

Abstract— In medical diagnostic imaging, an X-ray CT scanner or a MRI system have been widely used to examine 3D shapes or internal structures of living organisms or bones. However, these apparatuses are generally very expensive and of large size. A prior arrangement is also required before an examination, and thus, it is not suitable for an urgent fracture diagnosis in emergency treatment. In this paper, we propose a method to estimate a patient-specific 3D shape of a femur from only two fluoroscopic images using a parametric femoral model. This paper also introduces experiments using two radiographs of living bodies in a clinical setting. Experimental results show that obtained accuracy for shape estimation of four patients ' femurs is 0.8 to 1.1mm.

Key Words: Registration, Radioscopy, Femur, Parametoric model, Clinical setting

1. はじめに

X線CT(Computed Tomography)やMRI(Magnetic Resonance Imaging)は,生体の内部構造を短時間かつ 非接触で取得できるため,現在多くの医療現場で用いられている.しかし高い精度が得られるX線CTは, 一方で従来のX線レントゲン撮影と比較して被爆量が 大きい,装置が大型かつ高価である,また,事前に準備 が必要なため緊急性を要する骨折などでは利用しづらい,などの問題がある.そこで手間のかかるCT画像 を撮影することなく,より手軽なX線撮影装置によっ て得られる複数のX線投影像を用いて,生体の内部構 造,例えば骨格形状が3次元復元できれば,コスト,手 間,X線被曝などの観点からメリットが大きい.

一方,2次元のX線投影像からの3次元形状の復元 は基本的にill-posed な問題であり,通常十分に多数枚 の画像,あるいは形状に対する何らかの拘束が必要で ある.しかし人体の骨形状はある一定のパターンがあ り,それがモデル化できれば,少数のX線投影像から の3次元復元が可能となる.さらに実際の問題として, 形状復元のためにはX線投影像内で対象部位のみを抽 出し,その位置姿勢を特定する必要がある.

そこで, 我々は, 大腿骨の3次元復元問題に着目し, 多くの骨形状データから作成した大腿骨統計的形状モ デルを用い, 異なる2視点から撮影した2枚の大腿骨 X線投影像から, 大腿骨の位置姿勢, 3次元形状を推 定する手法を提案している[1].本手法は, Level Set Method の一手法である Fast Marching Method を用 いて X線投影像内の大腿骨輪郭線から2次元距離場を 構築し,それを用いて3次元統計的形状モデルと2次 元大腿骨像の位置姿勢合わせ,統計的形状モデルの形 状パラメータ推定を行うものである.

本稿では,56例のデータから作成した大腿骨統計的 形状モデルを用い,4人の患者に対して,臨床応用と 同条件でX線投影像を撮影して形状パラメータの推定 を行い,形状推定精度を検証した結果を示す.

 2、2次元X線投影像と統計的形状モデルを 用いた大腿骨の3次元形状復元

2.1 3次元統計的形状モデルの構築

本研究では岡田ら [2] によって提案されている統計的 骨形状モデルを用いる.この手法は,多数の骨形状サ ンプルの3次元形状を用いた統計的手法により,一般 的な骨形状を,ある1つの平均形状と数個の形状パラ メータからなる3次元統計的形状モデル [3] で記述する ものである.本手法による大腿骨の3次元統計的形状 モデルの生成手順の概略を以下に示す.詳細について は [2] を参照されたい.

まず,X線CTにより56人の大腿骨の3次元形状を 取得する.次に,得られた56人の大腿骨の3次元形状 に対し,股関節近位部の3次元表面形状点データを作 成する.そして,各表面形状データ上の点の3次元座 標を比較し,表面形状データの平均位置とそれぞれの 変位量を求める.最後に,変位量を主成分分析し,上 位53個の主成分と固有ベクトルを抽出する.これより, それぞれの大腿骨の3次元形状は,位置姿勢およびス ケールを正規化した平均形状モデルと,主成分と固有

ベクトルの積の線型和によって表現できる. 具体的には,一般的な表面形状データ点 x'は,平均形 状モデル上の点 x と, それぞれの主成分に対応する形 状パラメータ (s_i , $i=1 \sim 53$) により, 以下の式 (1) で 表される.

$$x' = x + \sum_{i} s_i \cdot \sigma_i \cdot \boldsymbol{e}_i \tag{1}$$

これより,一般的な大腿骨の3次元統計的形状モデ ルは,

• 平均形状モデルと主成分,および主成分ベクトル

● 複数個(最大 53 個)の形状パラメータ

の組み合わせで記述できる.

2·2 2枚のX線投影像からの大腿骨3次元形状の復元

本章では,まず初めに任意の位置,方向から撮影さ れた X 線投影像内の 2 次元大腿骨像と 3 次元統計的形 |状モデルの位置姿勢合わせ手法について説明し,次に2 枚の X 線投影像を用いた形状パラメータの推定手法に ついて述べる.両手法とも,Level Set Method の一手 法である Fast Marching Method により X 線投影像上 に構築された2次元距離場を利用し,2次元画像-3次元 モデルの位置姿勢合わせ,および形状パラメータ推定を 行うものである.X線投影像は静止画であることから, 本手法では一度2次元距離場が構築されれば,以降の 計算は最近傍点探索などを行うことなく高速に実行で きる.また,2次元距離場も,Fast Marching Method により非常に高速に構築可能である[4].

ただし,本稿では,大腿骨の3次元統計的形状モデ ルは,表面形状データ点を結んで作成される,均等で 十分に多数の3角パッチにより記述されているとする.

2.2.1 2次元大腿骨像と3次元統計的形状モデルの位 置姿勢合わせ

2次元距離場を利用した X線投影像内の 2次元大腿 骨像と3次元統計的形状モデルの位置合わせ手順を以 下に示す.

- step 0. 図1のように,撮影したX線投影像から,大 腿骨部を抽出する.
- step 1. 動的輪郭モデル (Snakes や Level Set Method [5])を用い, step1 で得られた大腿骨部の2次元 画像から大腿骨輪郭線を抽出する.
- step 2. Level Set Method の一手法である Fast Marching Method [6] を用い,得られた2次元画像 の輪郭線からの2次元距離場を構築する.図2(a)に 大腿骨画像に対して求められた距離場の例を示す.
- step 3. 大腿骨の3次元統計的形状モデルを適当な初 期位置に配置し,2次元画像上に投影する.
- step4.2次元画像上に投影された3次元統計的形状モ デルに対し,そのシルエット画像の輪郭線を求め, 輪郭線に対応する3角パッチを求める.
- step 5(a). 得られた輪郭線上の3角パッチに対し,距 離場に応じて計算される力を加える(図2(b)).

(a) 実 X 線投影像 (b) 大腿骨部の抽出

Fig.1 実 X 線投影像と大腿骨部抽出

(a) 大腿骨画像に対す (b) 輪郭線上の全て る距離場

の3角パッチヘ力f を適用

Fig.2 大腿骨画像に対する 2 次元距離場

Fig.3 重心周りの力とモーメント

- step 6(a). ロバスト推定法の一手法であるM推定法を 用いて, すべての輪郭線上の3角パッチに対して, 加えられた力の和と3次元統計的形状モデルの重 心回りのモーメントを求める (図3).
- step 7(a). 異なる視点から得られた複数の画像に対し て Step 3 から Step 6(a) を行い,力,モーメント の総和を求める.また得られた力,モーメントの 総和に応じて,3次元統計的形状モデルの位置姿 勢を更新する.
- step 8(a). Step 3 から Step 7(a) を力, モーメントの 総和が十分小さくなるまで繰り返す.

- in 4 X 娘妈影像内の士曜曼像輪郭娘と
- Fig.4 X線投影像内の大腿骨像輪郭線と3次元統計的 形状モデルの推移
- 2.2.2 形状パラメータの推定

次に3次元統計的形状モデルに対する形状パラメー タの推定手法について述べる.形状パラメータの推定 の際も,前項で構築したX線投影像内の大腿骨像輪郭 線の2次元距離場を用いる.

具体的には,前項の step4 の後,以下の手順で最適 な形状パラメータを推定する.

- step 5(b). 得られた輪郭線上のすべての3角パッチに 対し,その投影像における距離場の値の総和を誤 差 *E* と定義する.
- step 6(b). 誤差 *E* が最小となるように, 共役勾配法 を用いて形状パラメータ値を変更する.
- step 7(b). 得られた形状パラメータ値に応じて,3次 元統計的形状モデルを更新する.
- step 8(b). Step 3から Step 7(b)を,異なる視点から 得られた複数の画像に対して行い,誤差 E が十分 小さくなるまで繰り返す。

以上の手順で,位置姿勢合わせ,および形状パラメー タの推定を行った時のX線投影像内の大腿骨像の輪郭 線に対する3次元統計的形状モデルの推移を,図4に 示す.

なお,3次元モデルの位置姿勢,および形状バラメー タを共役勾配法などにより同時に推定することも可能 であるが,予備実験の結果,位置,姿勢の推定と形状 バラメータの推定を分離して交互に行ったほうが良い 収束結果が得られたことから,本手法ではこれらを分 離して行うこととする.

3. 2枚の画像を用いた大腿骨形状の推定実験

本章では,提案手法を4人の人工股関節置換患者に 対して得られたX線投影像に適用した結果を示す.

3.1 カメラキャリブレーション

まず,実験に先立ち,X線撮影装置の内部,外部パ ラメータを測定した.それぞれのキャリプレーション では,図5(a)の立体マーカ,図5(b)の平面マーカの2 種類のマーカを使用した.マーカの材質は,予備実験 により最も高いX線透過率を示したABSを用い,その

(a) 立体マーカ (b) 平面マーカ

Fig.5 用いたマーカ

Fig.6 撮影された立体マーカの X 線投影像

Fig.7 X 線投影像

中に,立体マーカにはステンレス製の小球9個を,ま た平面マーカには円盤16枚を埋め込んだ.これらの マーカを用いて,以下の手順でX線撮影装置のキャリ ブレーションを行った.

- step 1. 立体マーカを CT 装置により撮影し,ステン レス球の正確な相対位置を測定した.
- step 2. step1 で取得したステンレス球の位置とその投影像(図6)から, Tsaiの方法によりX線撮影装置の内部パラメータを推定した.
- step 3. 患者の臀部下に平面マーカをおき,図7のように,2方向からX線撮影を行った.
- step 4. step2 で推定した内部パラメータを用いて, step3 で用いた 2 枚の X 線投影像中の平面マーカの投影像(図7)から, Tsaiの方法により外部パ ラメータを推定した.

3·2 実験手順

次に得られた X 線投影像の内部,外部パラメータ を用いて,各患者の大腿骨の3次元形状の推定実験を 行った.

具体的には,図7のX線投影像を用いて,推定する 形状パラメータを主成分の上位から0~10個用い,提

Fig.8 推定パラメータ数に対する平均誤差の変化

Fig.9 推定パラメータ数に対する標準偏差の変化

案手法により画像上での位置姿勢,形状パラメータを 推定した.

3·3 実験結果

4 例の生体の3次元形状は,事前のCT撮影により, 取得している.そこで,以上の手順で推定された形状 と実際の形状の誤差を,推定形状の表面形状データ点 と実対象形状の3角パッチ表面までの最短距離の平均 値として求めた結果を図8に示す.さらに,このとき の標準偏差を図9に示す.ただし,横軸0は位置姿勢 のみ推定した場合の誤差である.

これより,生体を用いた場合でも,推定された形状 と実対象形状との平均誤差は,0.8~1.1mm程度である ことがわかった.一例として,case4に対し,平均形状 と実対象形状,および本手法により推定された形状を 図10に示す.

4. まとめ

異なる2視点から撮影した2枚の大腿骨X線投影像 から、3次元統計的形状モデルを用いて、大腿骨の3 次元形状を推定する手法を提案した.提案した手法は、 Fast Marching Methodを用いて画像内の大腿骨輪郭線 から2次元距離場を構築し、それを用いて3次元統計 的形状モデルと2次元大腿骨像の位置姿勢合わせ、統 計的形状モデルの形状パラメータ推定を行うものであ る.本論文では51例のデータから作成した大腿骨統計 的形状モデルを用い、4例の生体を撮影して取得した

Fig.10 パラメータ推定に用いた大腿骨モデル

実X線投影像から,位置姿勢および形状パラメータの 推定を行い,大腿骨の3次元形状を推定した.その結 果,推定された形状の実対象形状との平均誤差は0.8~ 1.1mm程度であり,提案手法により2枚の異なる方向 から得られた大腿骨像を用いるだけで,3次元形状ど うしの比較と同様の形状推定精度が得られることが確 認された.

謝辞

この研究の一部は,財団法人福岡県産業・科学技術 振興財団産学官共同研究開発事業(育成試験),及び文 科省科研費特定領域研究「多次元医用画像の知的診断 支援」(課題番号 15070207)の援助を受けた.

- R. Kurazume, K. Nakamura, T. Okada, Y. Sato, N. Sugano, T. Koyama, Y. Iwashita, T. Hasegawa.
 3D reconstruction of a femoral shape using a parametric model and two 2D fluoroscopic imagegs. In *Proc. IEEE International Conference on Robotics and Automation*, pp. 3002–3008, 2007.
- [2] 岡田, 佐藤, 小山, 菅野, 吉川, 越智, 田村進一.3 次元 C T画像を用いた解剖学的特徴に基づく統計骨形状モデル の構築.第24回日本医用画像工学会大会 (JAMI2005), IIA34, 2005.
- [3] TF Cootes TF, CJ Cooper, CJ Taylor, and J Graham. Active shape models — their training and application,. Computer Vision and Image Understanding, Vol. 61, No. 1, pp. 38–59, 1995.
- [4] 岩下, 倉爪, 小西, 中本, 橋爪, 長谷川.二次元距離場を用 いた三次元幾何モデルと濃淡画像の高速な位置合わせ. 電子情報通信学会論文誌信学論 (D-II), Vol. J88-D-II, No. 9, pp. 1889–1899, 2005.
- [5] J. Sethian. Level Set Methods and Fast Marching Methods, second edition. Cambridge University Press, UK, 1999.
- [6] J. Sethian. A fast marching level set method for monotonically advancing fronts. In *Proceedings of the National Academy of Science*, Vol. 93, pp. 1591–1595, 1996.