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Abstract—MAARS (Machine leaning-based Analytics for Au-
tomated Rover Systems) is an ongoing JPL effort to bring the
latest self-driving technologies to Mars, Moon, and beyond. The
ongoing AI revolution here on Earth is finally propagating to
the red planet as the High Performance Spaceflight Computing
(HPSC) and commercial off-the-shelf (COTS) system-on-a-chip
(SoC), such as Qualcomm’s Snapdragon, become available to
rovers. In this three year project, we are developing, imple-
menting, and benchmarking a wide range of autonomy algo-
rithms that would significantly enhance the productivity and
safety of planetary rover missions. This paper is to provide
the latest snapshot of the project with broad and high-level
description of every capability that we are developing, including
scientific scene interpretation, vision-based traversability as-
sessment, resource-aware path planning, information-theoretic
path planning, on-board strategic path planning, and on-board
optimal kinematic settling for accurate collision checking. All of
the onboard software capabilities will be integrated into JPL’s
Athena test rover using ROS (Robot Operating System).
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1. INTRODUCTION
The main roadblock to a Mars exploration rollout is that
the best computers are on Earth, but the best data is on
Mars. High-Performance Spaceflight Computing (HPSC) -
a new generation of radiation-hardened (RAD-hard) multi-
core processor qualified for space - is currently being de-
veloped by NASA and the Air Force, and would enable a
vast suite of new mission concepts [1]. The HPSC chiplet
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integrates three subsystems: the High Performance Process-
ing Subsystem (HPPS) consisting of two clusters of Quad
Cortex A53 ARM CPUs, the Real Time Processing Sub-
system (RTPS) consisting of dual lockstep R52 ARM, and
the Timing, Reset, Health Controller (TRCH), consisting of
Triple Modular Redundant low power ARM M4F core. The
algorithms presented in this paper are intended for the HPPS
susbsystem. In the meantime, the Mars Helicopter Scout
(Figure 1), the first vehicle to fly on Mars, uses Qualcomm’s
Snapdragon system-on-a-chip (SoC) for visual navigation[2].
The computation power of such modern commercial off-
the-shelf (COTS) SoCs for mobile devices far surpasses the
existing spacecraft computers such as the RAD750. For
example, the Snapdragon 855 SoC has the ability to run deep
neural networks in real-time with the support of its graphics
processing unit (GPU), its digital signal processor (DSP), and
its AI processor (AIP)1.

Figure 1: An artist’s concept of the Mars Helicopter Scout (MHS),
which will piggyback a ride onboard the Mars 2020 Rover to fly
in the Martian atmosphere for the first time in history. MHS is
pioneering the use of modern system-on-a-chip (SoC) for on-board
autonomy.

There is an urgent need for significantly enhancing on-board
autonomy of future rover missions. For example, the sample
fetch rover of the Sample Retrieval and Lander (SRL) mission
concept is expected to drive up to ∼ 1 km per sol, more than
a ten-fold extension of the average per-sol driving distance
of the Curiosity rover. Faster driving generates data at an
increased rate (e.g., navigation images taken at a constant

1Note the COTS processors are distinct from HPSC, therefore direct com-
parisons cannot be made. Rather, this paper focuses on the development
of autonomy algorithms that exploits the increased computational resources
delivered by these processors, as well as the testing of them on multiple
processor options.
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Figure 2: Unnoticed green monster problem - a metaphor that a
rover with extended driving ability but limited intelligence may miss
out on scientific opportunities.

interval), while the capacity of Mars-Earth communication
remains limited by the laws of physics as well as the avail-
ability of relay orbiters and the Deep Space Network. For
example, the downlink capacity from the Curiosity rover to
Earth is typically ∼ 500 Mbit (=∼ 60MB) per Sol while
data-intensive instruments, such as hyperspectral imagers and
ground-penetrating radars, can easily produce hundreds of
megabytes to gigabytes of data. Such situations may result
in the ”unnoticed green monster problem2” (Figure 2) [3],
meaning that science opportunities may be passed up by
necessity or missed entirely simply because the data cannot
be fully downlinked to Earth. Furthermore, since the majority
of the driving distance will need to be covered by AutoNav
(autonomous navigation), complex safety assessments that
are currently performed on the ground must be performed
on-board the rover. Solar-powered rovers, such as the one
being considered for a potential Mars Sample Return, have
larger uncertainties in their energy budgets compared to RTG-
powered rovers. This necessitates proactive energy manage-
ment as well as on-board prediction of energy generation and
consumption, which have previously been performed on the
ground during the Mars Exploration Rover missions.

Given these challenges, JPL’s Machine learning-based Ana-
lytics for Rover Systems (MAARS) project aims at develop-
ing autonomy software capabilities that would significantly
enhance the safety, productivity, and cost efficiency of future
Mars rovers by fully exploiting the computation power of
HPSC and modern SoCs such as Snapdragon. In particular,
MAARS focuses on the following two capabilities:

1) Drive-By Science (DBS)
DBS refers to a capability to analyze data, in particular
the engineering images acquired for autonomous driving, to
assist ground scientists to detect interesting science features
and selectively download relevant data without interrupting
drives. With DBS, we can convert an engineering rover
that does not have dedicated science instruments, such as
the Sample Fetch Rover, to a scientifically valuable one by

2This is a terminology coined by us.

allowing scientists to instruct the rover to find geological
features through its engineering cameras.

Our approach to realizing DBS is multi-fold. We use machine
learning to extract a compact representation of collected data,
such as feature vectors or image captions, which can be
used as a summary of the data for downlink. Alternatively,
the rover can perform data triage with criteria specified by
scientists. Furthermore, it allows the rover to autonomously
plan a path, select activities, and target the instruments to
achieve prescribed science goals with a significantly fewer
number of ground-in-the-loop cycles.

2) Risk- and Resource-aware AutoNav
The traversability assessment of the conventional AutoNav
solely depends on terrain topography obtained through stereo
vision, where the path objective is limited to trips between
waypoints. We incorporate additional risk factors, such as
terrain type and slip, as well as resource constraints, such as
the energy budget, into consideration when planning a path.
Combined with on-board data interpretation using machine
learning, it will allow future rovers to plan a long-range path
with diverse objectives, including driving energy minimiza-
tion and science gain maximization, while increasing the
level of safety.

What is described in this paper is the snapshot of our devel-
opment effort at the end of the second year of the three-year
project.

2. MAARS VISION AND OVERVIEW
MAARS is not a monolithic system but a collection of mul-
tiple autonomy algorithms, as illustrated in Figure 3. Each
capability is designed to be modular; that is, although all the
algorithms are integrated together through the Robot Operat-
ing System (ROS), each individual capability can be easily
adapted for different missions. Also, unlike what the name
of the project indicates, some of the MAARS algorithms do
not involve machine learning. Machine learning however
remains a central theme of the project. The fact that MAARS
is a homonym of Mars is not an indication of our exclusive
interest in the particular planet but simply a reflection of the
sense of humor of the team members. In fact, most MAARS
algorithms are applicable to rover missions in any world with
sufficient gravity for wheeled mobility. Finally, we note that
the apparent resemblance of algorithm names to Star Trek
characters, such as SCOTI, SPOC, RAND, and VeeGer, is
purely coincidental.

MAARS covers nearly all aspects of on-board autonomy that
would be needed for future rover missions, including percep-
tion, planning, and automated science. In the following three
sections, high-level overviews of all the algorithms developed
and investigated under this project are provided. Section 3
describes algorithms related to the DBS capability, includ-
ing automated image captioning (SCOTI), image similarity
search, on-board data prioritization, and the ground-based
interface for efficiently accessing and searching the on-board
database. The risk and resource-aware AutoNav capabilities
are described in Sections 4 and 5. The algorithms related
to local planning, including the vision-based driving energy
estimation (VeeGer) and on-board kinematic settling for col-
lision checking (OBKS) are included in Section 4, while the
algorithms related to global planning, including the ground-
based energy-aware path planning, information-theoretic path
planning, and on-board strategic path planning (RAND), are
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introduced in Section 5. Section 6 reports the experiment we
performed to test the DBS capability and section 7 describes
the overall software architecture and the software integration
into JPL’s Athena test rover. Finally, Section 8 briefly
summarizes our deployment and benchmarking effort on an
HPSC emulator and Qualcomm’s Snapdragon SoC.

3. DRIVE-BY-SCIENCE CAPABILITY
Overview

The objectives of drive-by-science are to autonomously
downselect a subset of images taken by the rover’s navigation
or engineering cameras over the course of an autonomous
drive such that the science value of the selected images is
maximized. The volume of downselected images is limited
by the rover’s downlink bandwidth. The notion of science
value is of course difficult to objectively define; our approach
characterizes this as a combined relevance score produced by
a trained model to select images according to a specification
provided by mission scientists for a given planning period.
This specification is provided in natural language using rele-
vant geologic vocabulary. We present a model called SCOTI
(Scientific Captioning Of Terrain Images) that automatically
generates captions of Mars surface imagery, trained on expert
annotations from Mars geologists. We also incorporate the
ability to specify image similarity using a distance measure
on extracted image features, which can also be used as a
measure of image diversity. The captioning and similarity
models are packaged into a content-based search system
that is the primary interface for how scientists will interact
with the rover. Scientists can provide a set of text queries,
similarity examples, diversity criteria, filters, and more for
what imagery they expect to be of scientific interest for the
next planning cycle. This specification is then uploaded to
the rover, which autonomously downselects a set of images
taken during a given drive.

SCOTI: Scientific captioning of terrain images

SCOTI takes images as an input and outputs a English sen-
tence explaining the geological content of the image. It is
built upon the Show, Attend, and Tell model [4]; it is an
attention-based model that automatically learns to describe
the content of images. The model is trained in a deter-
ministic manner using standard backpropagation techniques
with stochastic gradient descent using adaptive learning rate
algorithms. The encoder part of the model uses a convolu-
tional neural network for extracting a set of feature vectors,
also known as annotation vectors. The decoder part of
the model uses a long short-term memory (LSTM) network
that produces a caption by generating the words sequentially
conditioned on context vector as well as the previous hidden
state. The VGG19 pre-trained on ImageNet is used as the
feature extractor. However, in principal, other encoding
functions could also be used. Regularization strategy and
model selection are adopted based on BLEU scores. The
LSTM network is trained from scratch with 1,000 image
captions created by human geologists. It achieved a BLEU-4
score of 0.85 on validation sets. Sample outputs from SCOTI
are posted in Figure 4.

SCOTI enables an interplanetary Google image search. The
ground scientists express their interest in natural language
words, which are uplinked to the rover. Captions from
SCOTI in the on-board database are compared against the
query words for data prioritization. Alternatively, SCOTI
can be used as a data summarization capability, where the

ground scientists use the downlinked captions to decide
which images should be downlinked at full resolution. There
is a ground application, too: currently, scientists needs to
manually inspect tens of thousands of rover images to find im-
ages with specific geological features such as veins, nodules,
crossbedded layers and more. SCOTI allows them to find
images of interest through a text-based search like Google
search.

Image Similarity Search

We also developed an image similarity search capability,
which returns a list of images that are qualitatively similar to
a query image provided by users. This ability is enabled by
extracting an intermediate (Conv5 3) layer from the VGG19
image encoding portion of SCOTI and compare the feature
vector against a feature vector of other images using the
cosine distance metric to find the most similar or dissimilar
(in the case of novelty search) images.

Like SCOTI, this capability could be used for on-board data
prioritization and ground-based data search. For the on-
board application, the query image is first converted into a
feature vector, which is much smaller in terms of data size.
The uplinked feature vector is compared against the feature
vectors of on-board images to prioritize them. The ground-
based similarity search provides an additional way of quickly
finding images of interest in image datasets.

On-board data prioritization— A future rover can easily
collect gigabytes to terabytes of data (e.g., high-resolution
images, hyperspectral images, ground-penetrating radar ob-
servations) over a single operation cycle. However, it may
not be able to downlink all the raw data due to the limitation
in communication bandwidth. Data prioritization attempts
to identify a subset of the data that contain features relevant
to the query by scientists on the ground but contain diver-
sity with respect to the interesting feature’s representation.
Moreover, the total data volume of the subset cannot exceed
the available downlink capacity. This is an initial heuristic
approach at quantifying the expected scientific value that
geologists will receive from downlinking the image set. The
goal of the data prioritization problem is to maximize the
relevant dissimilarity amongst all pairs of data within the
selected set. While this basic idea applies to any kind of
data, in this project we mainly focused on images. We used
NAVCAM image data from the Curiosity rover as the dataset.

The image prioritization problem was formulated as a
quadratic knapsack problem as we are maximizing the value
of the image set (knapsack) through selecting images based
on pairwise relevant dissimilarity (quadratic decisions) and
the set is subjected to the downlink capacity. The objective
function of the model includes an adjustable hyper-parameter.
This hyper-parameter allows geologists to increase the simi-
larity or dissimilarity of images within the set. The intention
of this feature is to give geologists the ability to tune their
queries or to allow the system to provide recommendations
to how similar/dissimilar they prefer the images to be. The
feature assisted in providing geologists image sets are gen-
erated by the model for qualitative comparison, however, the
quadratic knapsack model is difficult to solve.

The quadratic knapsack problem is NP-Hard, which indicates
that finding an exact solution is computationally expensive.
The initial approach to solving this problem was implemented
using Gurobi’s Gurobipy package for python along with vary-
ing the program’s run-time. In addition, a greedy quadratic-
knapsack heuristic and a minimum spanning tree heuristic
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Figure 3: Overview of the algorithms developed under the MAARS project

Figure 4: Sample outputs from SCOTI, which generates a natural language sentence describing a given image.

were implemented for comparison of computational time
and objective function value. These approaches are initial
attempts at solving the computationally intensive problem;
other future approaches that are not implemented in this prob-
lem are defining the problem with a sub-modular objective
function or implementing a dynamic programming heuristic.

PDS pipeline

On the Earth, a geologist must manually search thousands
of images in the Planetary Data System Cartography and
Imaging Sciences Node (PDS) to find Mars images relevant
to their research. To provide a more efficient search ex-
perience, we have integrated SCOTI and image similarity
search into a content-based search system. SCOTI model
is deployed on a GPU-enabled PDS server through docker,
with a direct mount to the PDS MSL NavCam images. The
resulting model captions and image feature vectors are stored

in an ElasticSearch database, along with metadata such as
the sol, and latitude and longitude at which the image was
taken. ElasticSearch was originally designed for fast text-
based searches, but since its inception, it has been expanded
to include features that allow users to search by geolocation,
time, number, etc. Using a custom plugin that calculates the
cosine distance between two vectors, we add the capability
to search for similar images as well [5]. Combining these
attributes in one search engine enables scientists to quickly
find data by geological feature within the desired location or
sol range, and to search for ”more images like this.”

DBS Interface

To enable any scientist or rover operator to interact with all
of these DBS capabilities, we have built a web application
(Figure 6) that implements a Google Maps-like search in-
terface for the Martian surface explored by MSL. To start
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Figure 5: A sample result of the onboard data prioritization
algorithm. The algorithm returns a subset of data that balances the
relevance between the query and the diversity within the subset. This
balance can be tuned by a parameter β.

Figure 6: All our DBS capabilities are made available to scientists
and operators through a web-application.

with, an user may perform a text search on the SCOTI-
generated image captions after which the paginated side-bar
displays the query results by showing the picture, the gen-
erated caption, and other relevant metadata. Additionally, the
geographic locations of results on the current page are marked
by pins on orbital satellite imagery, while the geographic
distribution of all results is visualized using a dynamic heat
map. If the user is interested in specific geographic regions,
a drawing tool allows them to specify areas of interest and
only search and see results within those regions. We also
integrate the image similarly search capability. Once an
image is selected, a simple click of a button allows a user
to see similar images displayed in the same way as the text
query results. Ultimately, making these capabilities available
through a centralized user-friendly application greatly helps
scientists make the best use of the vast trove of Martian
images to make quicker and optimally-informed decisions.

4. RESOURCE-AWARE LOCAL PATH
PLANNING CAPABILITY

Overview

The local path planning capability of MAARS is provided by
a combination of several new and existing algorithms. On the
perception side, a new driving energy prediction algorithm
called VeeGer is proposed that combines the SPOC terrain
classifier [6] and obstacle detection with stereo vision. The
resource awareness comes from VeeGer, where the estimated
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Figure 7: (a) Energy consumption estimated from terramechan-
ics parameters predicted with Veeger-TerramechanicsNet, (b) RGB
images (top raw) and depth images (bottom) at time A∼E in (a).

energy usage is used as a part of the cost function of the path
planner. On the path planning side, a standard tree planner
is combined with collision checking. Users can choose
from three collision checking algorithms: ACE (approximate
kinematic settling) [7], which will be used by Mars 2020
Rover with a collision checking algorithm, the probabilistic
extension of ACE called p-ACE [8], and optimization-based
kinematic settling (OBKS). Alternatively, a meta algorithm
called CAAPS (Context - Aware Adaptive Policy Selection)
is also proposed that can autonomously choose the collision
checking algorithm which works best in the given environ-
ment. This section only describes new algorithmic compo-
nents: VeeGer, p-ACE, OBKS, and CAAPS.

Vision-based Driving Energy Prediction (VeeGer)

We proposed vision-based algorithms to remotely predict
the driving energy consumption using machine learning [9].
Specifically, we develop and compare two machine-learning
models in this paper, namely VeeGer-EnergyNet and Veeger-
TerramechanicsNet, respectively. The former is trained
directly using recorded power, while the later estimates
terrain parameters from the images using a simplified-
terramechanics model, which explained in the following
section and calculate the power based on the model. The
two approaches are fully automated self-supervised learning
algorithms.

Frontend: CNN—To combine RGB and depth images effi-
ciently with high accuracy, we propose a new network archi-
tecture called Two-PNASNet-5, which is based on PNASNet-
5. Figure 7 shows an example result of predicting power
by Veeger-TerramechanicsNet. A comparison of the two ap-
proaches showed that Veeger-TerramechanicsNet had better
performance than VeeGer-EnergyNet.

Backend: Terramechanics model—In VeeGer-TerramechanicsNet,
a simplified terramechanics model was used for both to
estimate the terramechanics parameters and to calculate
the driving energy of the rover. To train the VeeGer-
TerramechanicsNet, simplified terramechanics parameters
were estimated by optimizing the following model under the
condition in which the wheel load is calculated based on the
simplified terramechanics model and estimated wheel load
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balance: [9]:

min
knormal,n,kshear,zs,zd

[
(1− Fz/W )2 + (1−My/T )2

]
s.t. 0.0 ≤ knormal ≤ 9.0e5

0.1 ≤ n ≤ 1.0

0.0 ≤ kshear ≤ 1.0

1e−4 ≤ zs ≤ 2(r + h)/3

0.0 ≤ zd ≤ 0.0015
(1)

where W , T , Fz , and My are an estimated wheel load,
measured wheel torque, calculated wheel load, and calcu-
late wheel torque based on the simplified terramechanics
model, respectively. Moreover, knormal, n, kshear, zs, zd are
simplified terramechanics parameters used to calculate Fz
and My . Preliminary estimated terramechanics parameters
were mapped with RGB and depth images based on the
timestamps. More details on VeeGer is described in [9].

Probabilistic approximate collision check

Accurate kinematics-based collision detection on Mars rovers
requires computationally intensive iterative solvers with geo-
metric constraints and they are typically unstable on rocky
terrain. Due to computational constraints on slow spacecraft
computers, such as RAD750 (used by the Curiosity rover and
the upcoming Mars 2020 rover), a lightweight body-terrain
clearance evaluation algorithm (called ACE [10]) has been
developed for the automated path planning of the Mars 2020
rover. ACE obtains conservative min-max bounds on vehicle
clearance, attitude, and suspension angles without iterative
computation by estimating the lowest and highest heights
that each wheel may reach given the underlying terrain, and
calculating the worst-case vehicle configuration associated
with those extreme wheel heights. The conservative bounds
guarantee safety during autonomous navigation. However,
ACE’s conservative safety check approach can sometimes
lead to over-pessimism: feasible states are often reported as
infeasible, thus resulting in frequent false positive collision
detection (Figure 8). In order to reduce the over-pessimism, a
computationally efficient probabilistic variant of ACE (called
p-ACE [8]) has been developed, which aims to relax the hard
constraints imposed by ACE.
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Figure 8: ACE estimation results of body clearance. The red line
corresponds to the ground-truth state value and the shaded region
represents the intervals between the ACE bounds. The blue lines
indicate the allowable state range.

Given a target rover pose x = (x,y, ψ) and a terrain model
m, p-ACE estimates the probability of constraint satisfaction
of the remaining states ω ∈ R7 (clearance, attitude, and

suspension angles) as:

P (ω ∈ Ω|x,m) =

∫
ω∈Ω

p(ω|x,m)dω (2)

p-ACE estimates the constraint satisfaction probability (2)
in response to queries from the path planner. The probabil-
ity distributions are characterized offline by running Monte
Carlo simulations on the ROAMS (Rover Analysis, Model-
ing, and Simulation) [11], [12] simulator. p-ACE can be used
by planners for risk-aware motion planning. The collision
risk of a path X = {x0,x1, · · · ,xk, · · · } can be defined as:

R(X) ≡ max
k

P (ω /∈ Ω|xk) (3)

The path X is collision free if R(X) < r, where r is the risk-
factor threshold. Figure 9 shows the extension of a binary
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Figure 9: Extension of a binary collision map (ACE) to a proba-
bilistic collision map (p-ACE). Left: DEM. Middle: ACE collision
map in C-space (black = inaccessible, white = accessible). Right:
p-ACE collision map drawn as a heatmap in C-space. The rock
abundance is set to 5% CFA (cumulative fraction of area). For all
rover poses, the yaw angle is fixed to ψ = 0 .

collision map (ACE) to a probabilistic collision map (p-
ACE). The advantage of having probabilistic collision maps
is that it helps to quantify risk, which can be taken into
account by path planners. Figure 10 compares the success
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Figure 10: A comparison of the probability of success of risk-
aware path planning using ACE and p-ACE at various risk-factors
(r) and CFAs. Rocky 8 rover model was used for this comparison.

of motion planning on simulated Mars terrains with ACE
and p-ACE. Success here means the ability for the motion
planner to generate a valid path from the start pose to the end
pose. CFA ≥ 7% deterministic ACE has 0% success rate,
whereas p-ACE with a risk-factor of 1e-03 had around 50%
success rate. Even with a small relaxation of the worst-case
bounds in ACE, the success rate of path planning is drastically
increased. This is a clear indication of the reduced pessimism
involved with p-ACE.
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On-board Optimization-based Kinematic Settling (OBKS)

The use of approximate clearance techniques unsurprisingly
introduces varying levels of conservatism into pose prediction
and clearance evaluation algorithms [10]. When used in
path planning for collision-checking, ACE is seen to perform
better than the state-of-the-art algorithm GESTALT [13], [10]
that rejects all paths, including feasible ones that allow the
rover to straddle small obstacles and traverse over undulating
terrain. By determining a tighter interval on possible states
that the rover can occupy, ACE can reduce this conservatism.
It is important to note that the conservatism manifests as
false-rejections of candidate paths when used in a motion-
primitive path planner. To reduce the rate of false-rejections,
a more sophisticated algorithm is necessary such that the
confidence interval may be further reduced.

HPSC and COTS processors open up a variety of avenues
to explore, owing to the increased computational capabilities
available. We developed an iterative algorithm for onboard
computation that is very much in the vein of those used
in ground rover simulation software at JPL [11], [12].
The algorithm named Optimization-Based Kinematic Set-
tling (OBKS) solves a local optimization problem to mini-
mize contact between terrain and rover wheels. We modeled
it as a least-squares problem subject to pose constraints on
joint angles as determined by rover design limits. As we
expect the solution yielded by OBKS to be close to the exact
pose of the rover for a given location in a heightmap, the
interval of uncertainty is smaller hence, reducing the intrinsic
conservatism of the path planner in comparison with ACE.

Although the time per query of ACE is lower than that of
OBKS (seen in Figure 12), the increase in success rate during
random placement (seen in Figure 11) allows the time taken
to generate a path for a 20m traversal to be significantly lower
for OBKS in relatively complex terrain (CFAs greater than
7%). Due to lower conservatism, the OBKS planner is also
able to generate paths with lower path inefficiency (seen in
Figure 15). We implemented this algorithm on an Nvidia
Jetson TX2 board using Ceres solver [14] for Athena Rover
(see Section 7) and runs with a mean query time of 13.7 ms.

Figure 11: Monte Carlo estimates of success rates of ACE and
OBKS for random placement on height maps of varying CFA. A
random placement is considered a success if the collision-checking
algorithm returns that the location in the map is safe for traversal.

Meta-policy for Adaptive Planner Selection (CAAPS)

We developed a learning-based meta-algorithm to select the
optimal planner for a given state of the rover and its environ-

Figure 12: Monte Carlo estimates of query time for ACE and
OBKS for random placement on height maps of varying CFA.

Figure 13: Monte Carlo estimates of success rates for an ACE-
based planner and an OBKS-based planner for 20m traversals on
height maps of varying CFA. A traversal is considered a success if
the planner is able to generate a path from the start location to the
goal location in the map.

Figure 14: Monte Carlo estimates of path generation times for an
ACE-based planner and an OBKS-based planner on height maps of
varying CFA.

ment. The learned policy must select a planner such that the
energy or computation required to call the planner is mini-
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Figure 15: Monte Carlo estimates of path inefficiency for an
ACE-based planner and an OBKS-based planner on height maps of
varying CFA.

mized with a controlled trade-off in task performance. De-
velopment of OBKS (see summary in section 4) for onboard
computation on future rover missions provided insight into
the algorithm’s strengths and weaknesses upon utilization on
terrains of varying complexity. While in CFAs greater than
7% the arc-primitive path planner using OBKS outperformed
the same planner using ACE for collision-checking, the latter
demonstrated an advantage in path generation time with no
detriment to path inefficiencies for lower CFAs. We formu-
late the problem such that the two planners are regarded as
experts, their path generation times as computation-related
performance measures we mean to minimize whilst keeping
the probability of success greater than a user-defined thresh-
old. Formally, given a map M , planners Π = {Π1,Π2},

min
Πi∈Π

T (M,Πi) (4)

s.t P (s) ≥ η (5)

where T (M,Πi) is the expected time taken to produce a
path by planner Πi for map M, P (s) is the probability of
successful path generation and η is the user-defined lower
threshold.

To solve the problem posed above, we designed a simple
policy selector and implemented it to predict path generation
times and the probability of success for each planner. The
selector model is a 4 layer convolutional neural network that
operates on Depth Elevation Maps (DEM) maps as inputs.
We trained the model using a supervised learning approach
on over 7000 DEM maps spanning 30m x 30m and varying
CFAs (1%, 3%, 5%, 7%, 10%, 12%, 15%, and 20%) to
achieve mean test accuracy of 81% and 92% on success
prediction and path time generation respectively. Preliminary
results (summarized in Figures 16,17) indicate that the policy
selector is able to select the optimal planner to minimize
path generation time (and as a result, path inefficiency due
to strong correlation between the two quantities).

5. RESOURCE-AWARE STRATEGIC PLANNING
AND SCHEDULING CAPABILITY

The existing strategic path planning process for Mars rovers
consists of three subprocesses. First, traversability of the

Figure 16: Comparison of path generation time for planner us-
ing OBKS, ACE and meta-policy selector that greedily switches
between the two

Figure 17: Comparison of path inefficiency for planner using
OBKS, ACE and meta-policy selector that greedily switches be-
tween the two.

landing site, typically ∼ 10 x 10 km in size, is analyzed
using the orbital data. In Mars 2020, slope, rock density, and
terrain type are estimated for each of the 1 x 1 m grids of the
landing site, which is turned to estimated driving speed. More
details of this process are described in [15]. Second, a route
is planned based on the traversability analysis. The strategic
route has been planned mostly manually for the previous
and current Mars rovers. For the landing site traversability
analysis of the Mars 2020 Rover mission, we used an optimal
route planner that plans the shortest-time path from any
locations in the landing site to scientific regions of interest
(ROIs) [15]. This path planning capability is integrated into
Mars 2020’s ground operation software. Third, during the
day-to-day operation of the rover, the rover planner sets the
waypoints and the goal for the next planning cycle based on
the strategic route. When AutoNav is utilized, no-go zones
and keep-in zones are set if needed. Besides the uplinked
goal, waypoints, and no-go/keep-in zones, the on-board soft-
ware of the rover is not aware of any information regarding
the global environment. Hence, the rover is incapable of
onboard replanning at the strategic scale.

MAARS proposes updates to all three subprocesses. As for
the traversability assessment, we are experimenting with a
new approach based on thermal inertia. As for the ground-
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based route planning, we developed two new methods:
energy-aware path planning and scheduling, which concur-
rently optimizes a path and activity schedule in a way that
respects the energy constraint, and the information-theoretic
path planning, which takes into account the knowledge un-
certainty in orbiter-based traversability assessment as well as
a supporting aerial vehicle (helicopter) that serves as a scout.
Finally, as for the on-board plan specification, we developed
a new approach called RAND, which compactly compresses
the full plan and schedule of the entire state space, uplink
them, and decompress on-demand on-board, such that the
rover can replan anytime when it has to deviate from the
pre-planned route or it experiences unexpected change in the
battery level. We introduce each of these new approaches in
the following subsections.

Traversability analysis with thermal inertia

Thermal inertia could be used for traversability analysis as
it brings information about the surface and subsurface. It is
derived from the Mars Odyssey Thermal Emission Imaging
System (THEMIS) nighttime temperatures [16] and depends
on several factors including particle size, degree of indura-
tion, rock abundance and exposure of bedrock at the subsur-
face (within a few centimeters of the surface). It translates the
potential of a material to store heat during the day and release
it at night [17] and is defined as follows:

I =
√
kρc (6)

Where I is the thermal inertia in thermal inertia unit (TIU), k
is the bulk thermal conductivity, ρ is the bulk density and c is
the specific heat of the surface layer (up to a few centimeters
below the surface [17]). In general, low thermal inertia values
are associated with deep sand, leading to harder conditions
for a rover to drive. High thermal inertia, however, translates
into indurated material such as bedrock. This could imply that
the rover would have less difficulty driving on such terrain.
However, a dense rock field could also display high values of
thermal inertia (rocks are indeed indurated material), which
would be a harder terrain to drive on. It is thus necessary to
pair this data set with other ground data (e.g., images) to draw
meaningful conclusions and adequately assess traversability.

Energy-aware path planning and scheduling

We developed a planning algorithm that enables a solar-
powered rover to reach strategic goals in minimum time
while respecting energy constraints. The algorithm concur-
rently optimizes the trajectory and schedule, where activities
specified in the schedule include commands such as heater
activation, drive start, and sleep. With the ability to explicitly
optimize the rover’s energy use, this algorithm extends its
autonomy capability. For example, a schedule generated by
the planner for a given Martian day (sol) might look like the
following: Power on avionics and warm up motors in the
morning. Traverse the planned trajectory while generating
power during the day. Stop traversing and power off avionics
in the evening. We consider constraints such as maintaining a
battery charge over a given threshold while planning the path
and schedule.

The algorithm takes terrain data and the strategic start and
goal locations as inputs, and generates a ”cost-to-go map.”
Once the rover receives the cost-to-go map, it can calculate
the optimal action by a simple computation.

We formulated the problem as a Markov decision process
(MDP). The state is defined by four elements: the mode (the
driving mode or the sleeping mode), the cell (the location in

Figure 18: (a) The simulated route of the rover with the highlighted
region generated by the region reduction method. (b) The battery
charge history. The range from the minimum allowable charge to
the maximum charge is shown in green.

the discretized map), the time, and the state of the battery
charge. The action is either to change the mode, to drive to
an adjacent cell, or to stay at the cell. The cost is defined by
the action time, i.e., the travel time. A penalty cost is given
if the battery charge lower bound is violated (i.e., battery
depletion). Because the state space of the MDP is so large
that it cannot solve in a reasonable time, we proposed three
methods to reduce the state space: region reduction method,
periodic approximation method, and function approximation
method. The region reduction method reduces cells using the
results of a simpler problem that only considers the location.
The periodic approximation method assumes the cost-to-go
function is approximately periodic in time dimension with a
period of one sol. The function approximation method calcu-
lates the cost-to-go function in time and battery dimensions
with a fitting function generated from a few sample point
evaluations.

Figure 18 shows the results of the demonstration of our
algorithm in Jezero crater on Mars. The rover autonomously
scheduled the driving and reached the destination without
violating its battery charge lower boundary.

Information-theoretic path planning

We developed an algorithm that computes safe, travel-time-
optimized routes for a rover in uncertain terrain using a heli-
copter scout. The probability distribution of the rover’s travel
time for each square meter of the surface was generated based
on the mobility model developed by Ono et al. [18]. Inputs to
the model are terrain type determined using the SPOC terrain
classifier [6], slope from HiRISE digital elevation model
(DEM) data, and rock abundance in terms of the Cumulative
Fractional Area (CFA) covered by rocks. We assume that
the uncertainty in the rover’s travel time through a particular
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location is reduced when the helicopter scout observes that
location. Scouting a location in advance enables the rover to
make adjustments to its planned route if it finds the conditions
inside a nearby highly uncertain region more favorable, or
if it finds the conditions along its current planned route are
unfavorable.

Traditional uncertainty metrics such as Shannon Entropy
have difficulty distinguishing between different bimodal dis-
tributions, or introduce a bias toward specific probability
distribution shapes. Therefore we represented travel time
uncertainty as the standard deviation of the travel time prob-
ability distribution. Areas of high standard deviation are
efficiently explored through observation with the helicopter
scout, reducing the travel time uncertainty for the rover,
allowing an updated rover path plan. The helicopter scout
is routed using a Markov Decision Process. A Rapidly
Exploring Random Tree-Star algorithm (RRT*) [19] with
travel-time-based cost and the ability to be “re-wired” enables
computationally fast rover path planning and re-planning on
a large scale, high-resolution environment.

We tested algorithm performance in two environments; a
Monte Carlo simulation on a user-defined region, and a
simulation using data from the Jezero region of Mars. In
both environments, three scenarios were evaluated; rover
alone, rover with helicopter navely scouting ahead on the
planned route, and rover with the Information-Theoretic he-
licopter. The environment for the Monte Carlo simulation
consists of two obstacles and three possible passages. Each
passage was randomly assigned an expected speed, standard
deviation, and “ground truth”, which was revealed only after
observation by the helicopter. The environment in the Jezero
subregion consists of a hill with a central obstruction and two
possible passages, each of which has uncertain travel time.
Compared with the rover alone, results showed that when
the helicopter naively scouts along the rover’s planned path,
the travel time can on average be improved slightly. More
significant travel time improvements were obtained by flying
the helicopter scout on the optimized route without increased
risk for the rover. Benefits of this information-theoretic path
planning are enhanced in environments with larger travel time
uncertainty and multiple feasible routes for the rover.

Resource-aware, on-board strategic planning (RAND)

We have extended our efforts in global planning to increase
the strategic autonomy of planetary rovers. To achieve this,
we are currently developing the Resource-Aware planner for
Non-stop Driving (RAND), which aims at deploying large
resource-aware global plans onboard rovers. Traditionally,
strategic planners (such as the energy-aware path planner and
scheduler described previously) are only intended to be used
on Earth, where data storage and large computational efforts
are not a problem. By adapting them to online autonomous
operations, RAND maximizes the driving time of planetary
rovers on the surface by reducing their reliance on human-
made navigation plans every sol.

RAND compresses raw and heavy strategic plans through
Monte-Carlo simulations of kilometer-scale rover drives to-
wards a distant goal location. Each simulation varies the
rovers start state by randomly sampling the strategic state-
space (in our case, the physical location, time of day, energy
level and operational mode) to identify the most likely tra-
jectories the rover might employ in the near-future. Once
candidate trajectories are found, they are ordered based on a
custom utility metric and the ones with the highest score are
retained and uplinked to the rover. During ground operations,

the network of trajectories continuously informs autonomous
navigation operations at a strategic level. Figure 19 demon-
strates preliminary results where a large search space on
an orbital map of Jezero Crater was compressed down to
three reference trajectories. In this case, the compressed
plan required less than 1 megabyte of data as opposed to
approximately 1 gigabyte of data in the raw strategic plan.

This algorithm is robust to varying communication band-
widths and explores an interesting trade-off: uplinking more
data (i.e. more trajectories) will increase the strategic-level
awareness of the rover and lead to optimal behaviors with
generally low onboard computational loads. On the other
hand, a very small amount of data will lead to larger com-
putational efforts to recover strategic behaviors with similar
optimality.

6. DBS EXPERIMENT WITH SCIENTISTS
To test our Drive-By-Science (DBS) capabilities, we con-
ducted a “mock science mission,” in which four scientists
were asked to perform scientific tasks using the DBS capa-
bility. We put the subjects in a scenario simulating the con-
ceptual sample fetch rover mission, where the rover collects
significantly more images that can be sent. The subjects used
DBS tools to downselect the images in a way to maximize the
accuracy of scientific interpretation in the given tasks.

Methods—The experiment was performed in the following
steps. We prepared a dataset, which contained ∼ 100 MSL
NAVCAM images sampled from a range of several sols. It
was assumed that only 16 images out of the full dataset can
be downlinked due to data capacity.

1. First, each subject was asked to select 16 images to
downlink in one of the three following ways: i) random
selection (the subject has no choice), ii) selection by on-board
DBS, where the subject uplinks a set of keywords and the
DBS algorithm returns the 16 most relevant images, and iii)
ground-based selection with DBS, where the subject selects
16 images based on the auto-generated captions and thumb-
nails. The assumption made here is that although the rover
cannot send back all its raw images, captions and thumbnails
of all images are of sufficient size to be downlinked.
2. Next, each subject was asked to perform a scientific task
given in a form of a questionnaire using the 16 downlinked
images.
3. Then, the subjects were provided with the full dataset
4. Finally, each subject was asked to perform the same
scientific task on the full dataset.

We observed the change in the scientific interpretation before
and after seeing the full dataset. If the change is small, that
indicates that the downsampled dataset properly represents
the full dataset. We repeated this experiment three times with
different datasets.

Tasks— We developed a questionnaire that was cognizant
of the fact that different scientists have different research
focuses and may therefore focus on different features. Sci-
entists may interpret the same data differently depending on
if they specialize in this particular field of expertise, and
differences in interpretation are compounded by the limita-
tions in the image dataset (i.e. there is more uncertainty
in interpretation when images are limited in spatial extent
and are of relatively coarse resolution). We therefore asked
a set of straightforward science interpretation questions to
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Figure 19: Preliminary results with the RAND algorithm. In
A), three candidate trajectories are shown in yellow over the
original (uncompressed) strategic search space covering the
region in white. The underlying image is a map of Jezero
Crater at a resolution of 5 meters per pixel. Subfigures B) to
E) show the actual trajectory employed by a simulated rover
(in black) over the same terrain represented as a speed map
similar to Figure 18. The small white segment represent the
intent of the rover based on the trajectories available around
it. In Figure D), the rover switched from reference trajectory
1 to 3 as it was (strategically) the most time-optimal decision
at that moment.

gauge how the subjects would interpret the depositional and
diagenetic history of rocks presented in the same image sets,
in addition to a second set of questions asking which test
scenario they found to be most scientifically useful and why.

Results— Due to the small sample size and variability in
subjects, sol ranges, and image subsets returned by different
scenarios, it is difficult to quantify the performance and
accuracy of interpretation in each scenario. For example,
subjects had different interpretations when viewing the full
dataset, compared to the limited dataset, for each scenario,
demonstrating differences in their research background. Sub-
jects who were viewing the same sol range of images but
testing different scenarios would also interpret the images
differently, but this difference is expected because the dif-
ferent scenarios returned a different subset of the images in
that sol range. Figure 20 is the summary of semi-quantifiable
questions collected in the experiment. Again, no definitive
conclusions can be drawn from this experiment due to its
small sample size. While the experiment was meaningful in
that we could validate the tools and experimental approach,
an obvious next step is to scale up the experiment and collect
a statistically significant number of samples.

Subjects interpretations of the primary depositional environ-
ment were largely unchanged between the limited and full
datasets, but in almost half of the tests, additional diagenetic
features were recognized in the full dataset compared to the
limited dataset. This difference may be due to feature scale
and frequency, as sedimentary structures (used to infer pri-
mary depositional environment) span entire outcrops and are
relatively large in scale, while diagenetic features are smaller
features that tend to occur only in portions of outcrops.

Several subjects noted that while the limited datasets did
capture the variability in sedimentary and diagenetic features
in an image set, the best examples of such features were
often available only in the full dataset. Others noted that
they didn’t notice a significant difference between the two
datasets in terms of content, but became more sure of their
interpretations when seeing the full dataset. When asked
which scenario they preferred, most subjects unsurprisingly
chose Scenario 4 (the option to select their own images to
downlink).

Future Work—Recommendations for future work are to fur-
ther refine the automated captions and to separate the use of
different automated methods for different science use cases.
To the first point, successful improvements to the automated
captions would greatly improve trust in automated methods
in a realistic operations or research scenario. Several subjects
mentioned that they were wary of the captions after noticing
inaccuracies between the automated caption and their actual
observations and interpretations of that image. If it could be
demonstrated that this captioning model was almost always
accurate in terms of the geologic features identified, scientists
may view the captions as being more reliable in the absence
of the higher-resolution images.

Different automation methods may also have different ap-
plications in an operations or research scenario. Several
subjects mentioned that while they did not want to rely on
the automated captions for operations planning, they could
imagine automated captions to be very useful in their own re-
search, which can involve viewing and interpreting hundreds
to thousands of images. In a research scenario, automated
captions could help them quickly locate images that are
relevant to their research. Another possibility, which was not
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Figure 20: Results summary of the DBS experiment. Note
the small sample size.

Figure 21: Athena rover at JPL Mars Yard

tested in this test, is to use image similarity searches to aid in
an operations scenario. This method, which may be able to
identify when a rover is driving across different terrain than
was previously traversed, could be useful to identify when the
rover has crossed a geologic contact or to track where similar
lithologies/rocks are observed.

7. INTEGRATION WITH ATHENA ROVER
Software architecture

All the on-board capabilities described in this paper will be
integrated with the Athena Rover and tested in an analogous
environment. The integration effort is currently ongoing.
This section briefly summarizes the software architecture as
well as the current status.

The Athena rover in Fig. 21 was developed at JPL as a testbed
for on-board autonomy. Similar to the existing Mars rovers,
the navigation system is primarily vision-based using a stereo
camera rigidly attached to a movable mast. The Athena rover
has a NVIDIA TX2 board as its brain, which has a multi-core
ARMv8 CPU and a GPU.

The Athena rover software was written with the ROS [20]

Figure 22: VeeGer Software Architecture on Athena rover

Figure 23: The Athena rover autonomously avoiding geo-
metric obstacles to complete a 7-meters drive.

and CLARAty [21] frameworks. For portability, most of
the MAARS software is written as ROS nodes and uses
CLARAty’s ROS interface to communicate with the rest of
the system. Figure 22 shows a software architecture for
VeeGer integration. Each block roughly corresponds to a
single ROS node, and these nodes communicate over ROS
topics. To focus on the algorithm development, we make use
of open-source packages where possible.

Phase 1 results

The first deployment was recently completed and consisted
in geometric-only terrain assessment and planning using
standard ROS navigation tools and third-party open-source
packages. This implementation projects the rovers stereo
data onto a 2.5D map, which allows the identification of
high steps, steep slopes and dangerously rough terrain. It
is a baseline that our algorithms will build upon through
incremental deployments and fields tests in the near-future.

8. HPSC/SNAPDRAGON DEPLOYMENT
We created a toolchain that allows to run a deep learning
model on HPSC and Qualcomm’s Snapdragon SoCs, as
shown in Figure 24. We use TensorFlow to implement deep
learning models. The TensorFlow models are converted to
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Figure 24: The toolchain for deploying a deep neural net-
work model on HPSC and Snapdragon

TensorFlowLite and DLC formats for HPSC and Snapdragon,
respectively.

Since the HPSC chiplet is not available yet, we used a QEMU
software emulator running on CentOS. Note QEMU does
not represent the performance of actual HPSC. The primary
purpose of the QEMU deployment is to make sure the algo-
rithms run on the chip. The secondary purpose is to make
relative comparisons of run time with different models (e.g.,
floating point vs quantized), but again the run time on QEMU
is likely not proportional to the actual run time on HPSC.
As for Snapdragon, we selected Snapdragon 820 and 855
SoCs, both of which are based on multicore-heterogenious
architecture are utilizing several versions of ARM CPUs,
GPUs and DSPs. Note that the purpose of the benchmarking
effort is not the comparison of the two processors as they
are distinct from each other, although they share the same
instruction set architecture (ARMv8) and have a comparable
number of cores (HPSC:8, Snapdragon 820:4, 855:8). The
results are unique to each processor.

HPSC platform

HPSC Chiplet integrates three subsystems - High Perfor-
mance Processing Subsystem (HPPS) - several clusters of
Quad Cortex A53 ARM CPUs, Real Time Processing Sub-
system (RTPS) - Dual lockstep R52 ARM and Timing, Reset,
Health Controller (TRCH) - Triple Modular Redundant low
power ARM M4F core.

Snapdragon architecture

Snapdragon 820 is equipped with four ARMv8 cores (2 high
efficiency and 2 low power), GPU Adreno 530 and Hexagon
680 DSP. Snapdragon 855 has tri-cluster configuration of 8
ARM cores (1 prime super high efficiency core for single
threaded applications and 3 high efficiency Cortex-A76 cores,
and 4 low power ARM Cortex-A55 cores), GPU Adreno 640,
and Hexagon 690 DSP (with wide vector extensions (HVX),
dynamic multi-threading, VLIW and SIMD instruction sets
and AI Processor AIP)

Benchmarking

Qualcomm’s Snapdragon Neural Processing Engine (SNPE)
SDK provides tools to convert trained deep learning model
from frameworks like Caffe/Caffe2, TensorFlow, Py-Torch to
Qualcomm format DLC file which then is used to perform
forward inference passes using one of the Snapdragon accel-
erated computing cores. To collect performance metrics we
ran inference of SPOC lite model converted to DLC format

on Snapdragon 820 and 855 SoCs and benchmark scripts pro-
vided with SNPE. Tables 1 and 2 shows our prelimiary bench-
mark results. More benchmarking will be performed in the
third year of the project. In general, 8-bit quantization results
in a non-trivial speed up on both platforms without significant
changes in the classification accuracy. The computation time
on HPSC QEMU is not reflective of the computation time of
the real hardware, which would be significantly faster. On
Snapdragon, GPU acceleration was not very effective due to
the most computationally demanding operation (depth-wise
convolution) was not supported by SNPE and depended on
CPU fallback.

9. CONCLUSIONS
This paper describes the snapshot of all activities of the
MAARS project at the end of the second year. The goals of
the third and the last year of the project are to i) integrate all
the algorithmic capabilities, ii) deploy the integrated capabili-
ties on Athena rover and test them in analogous environments
such as JPL’s Mars Yard, and iii) further benchmarking of
algorithms on HPSC QEMU and Snapdragon SOCs. At
the end of the project, the technologies are expected to be
matured to TRL 4-5.
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