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Abstract—Terrain knowledge around unmanned ground vehi-
cles (UGVs) is vital for autonomous navigation. Having global un-
derstanding of the surroundings of UGVs is important, although
the field of view from UGVs is very limited. Thus, we utilize an
aerial vehicle to provide a large terrain map from sequential
aerial images. In this paper, we present multiple techniques
to accelerate the process of terrain classification so that it
can run onboard on the aerial platform. The main techniques
used to accelerate the process is a ”knowledge distillation”
of a deep neural net to a shallower one, and a super pixel
implementation. We evaluated our system on Jetson TX1 with
actual images collected from a weather balloon which confirmed
the effectiveness of the proposed system.

Index Terms—Terrain classification, super-pixel, deep learning

I. INTRODUCTION

For an autonomous unmanned ground vehicle (UGV), in-
formation about the terrain around it is vital for autonomous
navigation. Imagine an UGV that is able to do exploration
and perform work that is not viable to humans because of the
uninhabitable and unsustainable environment. In a dynamic
or unexplored terrain, ensuring that the UGV has information
about the current terrain around it would significantly help to
optimize the autonomous navigation capabilities. Especially an
UGV driving with high speed may not have enough time to
avoid obstacles which are occluded until recently.

To solve this issue, one of the solutions is to support
UGVs from aerial platforms [7]. An important function to
be achieved by aerial platforms is terrain classification from
aerial images, which will be used for several processes in-
cluding path planning for UGVs and exploration planning of
aerial platforms. Softman et al. proposed a laser-based terrain
classification of urban environment from an aerial platform
[16]. In [4], Delmerico et al. introduced a collaborative search
system which consists of an aerial robot and an UGV. A terrain
map of the environment is provided by the aerial robot. Jafri
et al. mainly focused on a path planning of an UGV, whose
cost map is generated from terrain classification results [11].
The above works targeted a relatively narrow environment,
where a large terrain map is not generated. Getting a larger
terrain map is important to have global understanding of an
area where UGVs are and to plan global and efficient path for
these.
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Generation of a large terrain map consists of several steps
as follows: (1) terrain classification after taking an aerial
image, (2) registration of sequential aerial images, and (3)
fusion of terrain classification results of multiple images. Each
step, especially steps 1 and 3 are generally computationally
expensive to run onboard on an aerial platform, as we explain
in the following paragraphs. Therefore, in this paper, we focus
on validating candidate techniques to accelerate these two
steps. To the best of our knowledge, this is the first study
which verifies multiple techniques to speed up the steps for
terrain classification.

High-accuracy terrain classification is achieved by Deep
Learning approaches [3] [18] [12]. However, in general these
approaches are computationally demanding due to its large
number of layers in their neural network (NN) architecture.
To reduce the computational cost, one idea is to decrease the
number of layers in the NN architecture, but still keep as much
as possible of the performance of the full NN architecture.
This can be achieved by ”distilling the knowledge” which is
proposed by Hinton et al. [9] [10]. In the distillation process
one tries to distill the knowledge trained into a deep model
into a more shallow one.

After the 2nd step (image registration), there are some
overlapping areas among images. Therefore, in the 3rd step,
terrain classification results of multiple images are fused. A
naive approach to fuse multiple images is voting of terrain
classification results at each pixel, which results in high
calculation cost. To solve this issue, we apply a super-pixel
approach (e.g. SLIC, Simple Linear Iterative Clustering [1]) to
an aligned large image, which categorize multiple neighboring
pixels with similar value in an image into super pixels. This
dramatically reduces the computational cost. There are several
existing works [5] which use the super-pixel approach to
accelerate the terrain classification process, but there is none
we are aware of which applies a super-pixel approach to fuse
terrain classification results.

Our paper is organized as follows. Section II describes
the system overview, acceleration of terrain classification, and
fusion of multiple terrain classification results of sequential
images. Section III explains a collected data set, implementa-
tion details, and experimental evaluations of the approaches.
Finally, section IV presents the conclusions and discusses
future works.



II. GENERATING LARGE TERRAIN MAP FROM SEQUENTIAL
AERIAL IMAGES

A. System overview

First, we explain the system overview for generating a large
terrain map from sequential aerial images. As we explained in
the introduction, there are three steps ((1) terrain classification,
(2) image registration, and (3) fusion of terrain classification
results of multiple images). While time-series images are
taken from an aerial platform, these three steps are applied
sequentially to each image (1st and 2nd steps can be applied
at the same time if there are multiple computing resources).
We will explain more details about the 1st and 3rd steps and
how we accelerate these in the following sections. When the
2nd step is applied, GPS information of the aerial platform is
used as an initial position if it is available. The registration
process is done by estimating a homography matrix between
images. This process creates a larger terrain map with some
overlap regions between images.

B. Acceleration of terrain classification

There are multiple DL approaches for terrain classifica-
tion. In this study, we use DeepLab [2], and techniques
which we explain in this section can be applied to any DL
approaches. The Deeplab architecture is large, with over a
hundred convolutional operations in it. It is a requirement that
an onboard device that is to run the algorithm has enough
memory. Unfortunately, some of devices such as the Jetson
TX1 does not. Besides, as we explained in the introduction,
the computational cost depends on the number of layers in DL
approaches.

To accelerate the process of terrain classification, there are
multiple approaches, such as distilling the knowledge of the
DL model and applying a super-resolution approach to images
before terrain classification. In this study we focus on the
distillation and the super-resolution approach is left as a future
work.

The architecture of the DeepLab has 34 residual blocks
spread over 4 main parts, where all blocks in the same part
has the same dimensions in the NN layers. The first, second,
third, and last parts have 3, 4, 23, and 3 blocks, respectively.
We modified the DeepLab architecture so that the total number
of residual blocks becomes 13, while still maintaining 4 main
parts. Each of the first and second parts now has 2 residual
blocks, while the third part has 8. The last part has only one.
To distill the knowledge from the full DeepLab, first we train
the full DeepLab with a training data set. We then train the
distilled DeepLab model by calculating a loss function against
both annotation information in the training data and predicted
values by the full DeepLab. A weight is set to calculate loss
values as loss = λlossa+(1−λ)lossf , where lossa and lossf
are defined as loss functions based on annotation information
in the training data and predicted values by the full DeepLab,
respectively. In experiments, we set λ = 0.75.

Fig. 1. An example result of SLIC [1]. Yellow boundaries show different
patches separated by SLIC.

Fig. 2. An example of captured images.

C. Acceleration of fusion of terrain classification results

In the overlapping area between images, each pixel is
classified at least twice. A straight forward approach to fuse
overlapping area is to average scores / get max score of terrain
classification results at each pixel. There are, however, a costly
disadvantage in the cost in time, since the cost increases
linearly with the number of pixels in the overlapping area.

To reduce the computational cost, we apply a super-pixel
approach, which creates a continuous patch that ideally shares
similar features. Specifically we utilized SLIC (Simple Linear
Iterative Clustering) [1], and its example result is shown in
Fig. 1, whose original image is Fig. 2. Yellow boundaries
show different patches separated by SLIC. Shuurmans et al.
proposed an approach of a super-pixel-based max-pooling
operation [15], and we take advantage of this max pooling
operation as follows. After a large map is generated by image
registration process in the 2nd step, we apply SLIC to it to
generate multiple patches. At each patch, we apply the super-
pixel-based max-pooling operation, which results in terrain
classification at each SLIC patch.

III. EXPERIMENTS

In this section we describe the data set, details of imple-
mentation, and experimental results.

A. Data set

This work is a part of a weather balloon project at Jet
Propulsion Laboratory. Thus, we generated our data set from



Fig. 3. Annotated image of Fig. 2.

Fig. 4. Terrain classification after reducing the image resolution of full size
image. Ground truth is shown in Fig. 3.

images taken during a balloon flight. (Zephyrus VII test flight
in July 2018 [6]). An example captured image is shown in Fig.
2. With an image annotator tool developed by Tangseng et al.
[17], annotations containing terrain type were created for each
image to serve as the ground truth in the training process. The
data set differentiates between twelve classes (sand, soil, dirt
road, rock, bedrock, tree, bush, bush area, car, person, paved
Road, building). Annotated image of Fig. 2 is shown in Fig. 3.
Here, image size is 1920 × 1080 and the number of annotated
images is 240. In experiments, 50 % of images are used for
training and testing, respectively. Image shown in Fig. 2 is not
used in training of the DL model, but used as part of the test
data.

B. Implementation details

Both the 1st and 3rd steps for terrain classification and
fusion are implemented in PyTorch and run on the GPU.
The 2nd step for image registration is implemented in C++,
which is called from Python using the Boost framework. All
experiments are done on Jetson TX1, which we mounted on
a quadrotor drone. (DJI Phantom III).

Calculation cost, accuracy, and memory usage of terrain
classification depends on input image resolution into distilled /
full DeepLab. The image resolution we use is too large (1920
× 1080) to load on Jetson TX1. One can simply reduce the
image resolution, but the accuracy is very low, as shown in
Fig. 4, whose ground truth is shown in Fig. 3. Therefore we
split the full image into multiple grids with overlapping areas
between grids. Here we set overlapping areas to smooth the
gap between grids in the step 3.

Fig. 5. Grid-based terrain classification result of Fig. 2 without any overlap
(setting (i)).

In the following experiments, we used two settings: (1)
evaluation of 1st and 3rd steps with a single image and (2)
evaluation of the whole steps with sequential images.

C. Evaluation with a single image

In this section we evaluate the acceleration of terrain
classification and fusion processes. All experiments are done
with images which are divided into 80 grids (8 × 10 regions).
We tested 5 different settings: (i) grid-based approach without
overlap, (ii) grid-based approach without overlap but with
CRF (conditional random field) [13], [14], (iii) grid-based
approach with overlap, (iv) grid-based approach with overlap
and CRF, and (v) grid-based approach with super-pixel (our
technique). Here, CRF is a popular technique to improve the
accuracy of terrain classification. In settings (iii) and (iv),
average score of the terrain classification results in overlapping
area is calculated in each pixel.

Figures 5 ∼ 9 show visualization of terrain classification of
Fig. 2 by 5 different settings, respectively. In Fig. 5 (setting
(i)), more detailed terrains are classified compared with Fig.
4 (simple rescaling the whole image), but we can clearly see
gaps between grids and small noisy results. The CRF approach
in Fig. 6 (setting (ii)) removed small noise, but we still see
gaps. The overlap-based approach in Figs. 7 (setting (iii))
and 8 (setting (vi)) improved results visually. Finally, super-
resolution results in Fig. 9 (setting (v)) show smooth results
between grids.

Table I and Fig. 10 show quantitative evaluations of the 5
settings and calculation costs, respectively. From these results,
the grid-based approach with averaging score in each pixel
and CRF-based approaches (settings (ii) ∼ (vi)) have a high
calculation cost in time. Super-pixel approach improved the
calculation cost a lot and also the terrain classification accu-
racy compared with setting (i). CRF-based approach shows the
best performance, but takes too much time. Overall, setting (v)
(grid-based approach with super-pixel) is a reasonable choice
to be used by considering the balance between calculation time
and accuracy.

D. Evaluation of the system with sequential images

In the final experiment, we used 6 sequential images as
shown in Fig. 11. Actual scale in each image is 80 [m]
× 150 [m]. We run all steps with these images. Figure 12



Fig. 6. Grid-based terrain classification result of Fig. 2 without any overlap
but with CRF (setting (ii)).

Fig. 7. Grid-based terrain classification result of Fig. 2 with overlap (setting
(iii)).

Fig. 8. Grid-based terrain classification result of Fig. 2 with overlap and CRF
(setting (vi)).

Fig. 9. Grid-based terrain classification result of Fig. 2 with overlap and
super-pixel (setting (v)).

TABLE I
EVALUATION RESULTS OF THE DIFFERENT VARIANTS.

Setting Overall acc Freq. weight acc
(i) Non-overlapping grids 0.62 0.49

(ii) Non-overlapping grids w. CRF 0.68 0.53
(iii) Overlapping grids 0.64 0.50

(vi) Overlapping grids w. CRF 0.70 0.55
(v) Overlapping grids w. super-pixel 0.64 0.50

Fig. 10. Calculation cost of the different settings.

shows the registration results, which produces a well aligned
image. Figure 13 shows terrain classification results. Although
there is some misclassification between bush class and bush
area class, the basic information of these two classes are
the same. The vast majority of the terrain classification is
good. The overall calculation time to process 6 images is 55
[sec] by the overlapping-based super-pixel approach, although
overlapping-based CRF approach took 185 [sec], which is too
long.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a system to accelerate the
process of generating a large terrain map from sequential
aerial images. In our system we integrated two techniques:
(1) ”knowledge distillation” to generate much shallower neural
network architecture to accelerate the terrain classification
process, and (2) integration of super-pixel approach to fuse
terrain classification results between overlapping images. The
effectiveness of the proposed system is confirmed by the
undertaken experiments. The implemented techniques seem to
work as well as can be expected, given the limited resources
available for computation. Most of the misclassification is be-
tween similar classes, such as ”sand” and ”dirt road”, and there
is little misclassification between very different classes, such
as ”building” and ”sand”. In a large terrain map the distinction
between the most different classes is most important, and our
experiments show that our system achieve that.

Future work includes applying a super-resolution approach
to images before terrain classification. Future work also in-
clude comparing the current Deeplab ResNet architecture used
to other ResNet architectures, both shallow and deep.



Fig. 11. The six images used in the 2nd experiment.

Fig. 12. Image registration results from 6 images (Fig. 11).

Fig. 13. Terrain classification and fusion results by grid-based super pixel.
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