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Abstract—This paper proposes a new concept named ”fourth-
person sensing” for a service robot. The proposed concept
combines wearable sensors (the first-person viewpoint), sensors
mounted on robots (the second-person viewpoint), and sensors
embedded in the environment (the third-person viewpoint), and
the disadvantages in individual sensors are compensated by
combining sensory information from the first, second, and third-
person viewpoints. The fourth-person sensing is effective to
understand a user’s intention and a context of the scene, thus it
enables to provide a proper service by a service robot. As one
of applications of the fourth-person sensing, we develop a HCI
system combining the first-person and the third-person sensing,
and show the effectiveness of the proposed concept through robot
service experiments.

I. INTRODUCTION

Due to the rapid aging of the population, a labor shortage
in hospitals or care facilities is becoming a serious problem.
To mitigate the impact on this problem, the development of
a service robot which coexists with human in a daily-life
environment is an urgent challenge. On the other hand, since
a high level of safety is required for a service robot, the robot
needs to acquire a wide variety of surrounding information,
and plans and executes a proper service task. However, these
functions are quite hard to be implemented in a single robot
due to a limitation of payload or processing and sensing
capabilities.

To tackle this problem, we have been developing an
informationally structured environment and its architecture
named Town Management System (TMS). In TMS, a variety
of sensors such as a laser range finder or a camera are
embedded in an environment and a distributed sensor network
is organized [1], [2]. The captured information is integrated
and stored to a TMS database. A service robot accesses the
TMS database and obtains required information anytime and
anywhere. In other words, the service robot is able to acquire
a high sensing performance which cannot be realized by itself.
We also have started the development of a new TMS named
ROS-TMS, which adopts Robot Operating System (ROS) as a
middleware so that it makes more flexible to add and replace
sensors and robots [3].

Here, let us classify the environmental information man-
aged by the ROS-TMS in terms of ”person”. The viewpoint
of the user can be regarded as the first-person information,
and the one of the service robot which provides a service task
is the second-person information. In addition, the information
obtained by the embedded sensors in the environment can be
regarded as the third-person information. From the second and
third-person viewpoints, a wide variety of information of the
environment can be obtained, and the systems which combine
second and third-person information have been reported [4],
[5]. However, in the area near a user which is important to
provide an appropriate service task, it is often difficult to

obtain sufficient information in terms of the resolution and the
accuracy due to the occlusions or the distance from sensors.

This paper proposes a new concept named ”the fourth-
person sensing” for a service robot, which combines conven-
tional second and third person sensing with the first-person
sensing obtained by wearable devices. In addition, to show
the effectiveness of the fourth-person sensing, we focus on an
ambiguous verbal communication between a user and a service
robot, and show a robot service experiment triggered by user’s
ambiguous voice commands.

II. THE FOURTH-PERSON SENSING

A. Concept of the fourth-person sensing

The fourth-person sensing is regarded as an imaginary
viewpoint from which we can understand the correct situation
of the environment objectively by combining the first, second,
and third-person information. Let us show an example for
correct understanding about this concept with a ”novel”. In
a novel, the viewpoint of the main character provides the
first-person information and his partner’s viewpoint gives the
second-person information. Moreover, the viewpoints of peo-
ple surrounding them provide the third-person information. In
real life, there is no way of obtaining the second and the third-
person information directly. However, when we read a novel,
we can know these information explicitly from the sentences,
imagine the story, and forecast the next scenario. This reader’s
viewpoint, which we call the fourth-person information, will
be quite useful to understand the situation of the world in the
novel correctly. The extreme target of the fourth-person sensing
is to understand the user’s intention or the context correctly
by integrating there information from different viewpoints.

As explained in Section I, each viewpoint information has
pros and cons for a HCI system. The first-person information
is quite useful to recognize user’s action and estimate his/her
intension. However, the measurement area is narrow and local
and fragmented information tends to be obtained. The second-
person information has high degrees of freedom in terms of
data acquisition comparing with the third-person information
obtained by fixed sensors, since the robot equipped with
second-person sensors is able to move freely in an environ-
ment. However, the payload and the processing performance
of the robot is limited and it is almost impossible to acquire
sufficient information completely to perform a proper task
safely. Though the third-person information is able to measure
the target, the user, and the environment comprehensively,
sensors tend to be located away from the user and the robot
in the environment and sometimes it is hard to obtain accurate
information due to occlusion or low resolution. Therefore, the
correct recognition of the user’s intension from the third-person
information is sometimes very difficult.
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On the other hand, by fusing all-person information in a
complementary way, the following advantage will be expected
for the instruction to a service robot. Correct understanding
for an ambiguous instruction will be realized. The verbal
communication is effective for requesting a robot service since
it is induced by a user intentionally and can be an explicit
trigger for a service request. However in natural conversation,
it is often ambiguous and user’s intention or request are not
clearly expressed. On the other hand, for instance, the first-
person images taken by a wearable camera contain a rich
information such as what the user is gazing or what the user
is doing now. These gaze information or action information
taken from the first-person images may make an ambiguous
instruction more clear.

In the following sections, we introduce the first, second,
and third-person sensors we utilized in the experiments.

B. The first-person sensing

In recent years, several high performance wearable cameras
are provided in the market. Especially, smart glasses equipped
with on-board cameras are very popular as a HCI device and
enable to capture first-person images. In this research, we
adopted Moverio BT-200AV (Epson) smart glass as shown
in Fig.1. First-person images have been used to sense the
environment and the user’s activities from the user’s view
point, for various purposes of activity recognition in daily life,
sports scene, and so on [6].

3D LRF

2D LRF

RGB-D camera

Fig. 1. (Left) the first-person sensor in a wearable device, (right) the second-
person sensors on a service robot.

C. The second-person sensing

A service robot needs to acquire user or environmental
information correctly by on-board sensors for executing a
proper task safety. The obtained information is regarded as
the second-person information. The service robot used in the
experiments (SmartPAL V, Yaskawa, Fig.1) is equipped with
a 3D laser range finder (HDL-32e, Velodyne) and a RGB-D
camera (Xtion, ASUS) on a head, and a 2D laser range finder
(TopUrg, Hokuyo) on a body.

D. The third-person sensing

As introduced in Section I, we are developing the dis-
tributed sensor network and information management architec-
ture named ROS-TMS. Figure 2 shows the experimental room
which is managed by ROS-TMS. In this room, laser range
finders (UTM-30LX-EW, Hokuyo), RGB-D cameras (Xtion,
ASUS), the position tracking system (Vicon MX, Vicon),
RFID tag, intelligent cabinet/refrigerator system consisting
of RFID-tag readers and load cells, etc. are embedded and
environmental information is collected and stored in the TMS

database. Position of objects, robots, and humans are tracked
by LRF, Vicon MX and the intelligent cabinet/refrigerator.
Especially the intelligent cabinet/refrigerator is able to detect
not only the object name by reading RFID tag attached on
the object but also the position of the object using the force
distribution measured by the load cells. These informations are
obtained from the embedded sensors in the environment, thus
we regard these sensors as the third-person sensors.

Intelligent cabinet system

Vicon MX

Load cell,
RFID tag reader

Informationally structured room

RGB-D camera

LRF

Intelligent cabinet/refregerator

Fig. 2. The third-person sensors embedded in an environment

III. APPLICATIONS OF THE FOURTH-PERSON SENSING

The most promising application of the fourth-person sens-
ing is the correct understanding of user’s instruction from an
ambiguous verbal communication. In this section, we focus
on a fetch-and-carry task by a service robot, and show an
application of the fourth-person sensing which performs a
service task appropriately even if the user’s instruction is
ambiguous and the system cannot recognize it correctly by
the conventional second or third-person sensors.

The typical scenario is shown in Fig.3. There are three
objects (”pet bottle”,”bucket”, and ”watering pot”) in the
environment, which are all related to ”water”. We can imagine
that ”pet bottle”, ”bucket”, and ”watering pot” are related to
”food”, ”cleaning”, and ”gardening”, respectively.

At first, the user during a meal instructs the robot to
bring ”water” by voice. However, since there are plural objects
related to ”water” in this environment as described above, the
robot cannot determine the proper one which fits the user’s
preference from such an ambiguous oral information. These
ambiguous instructions are often encountered in our daily life.

On the other hand, if the information about the user’s
action, for instance ”eating” in this case, can be obtained, the
robot recognizes that the user might ask to take something
related to food, and is able to choose a pet bottle for drink from
plural candidates. As obviously shown in this example, human
action is quite important to understand the user’s intension.

To recognize a user’s action, the first-person vision is a
powerful information source comparing the second and third-
person sensors. Though the second and third-person sensors
are also helpful for action recognition, the first-person vision
can give a more reliable information since the human action
is tightly related to the image he/she has seen and the ego-
motion which might be closely related to the action can also
be captured directly from the first-person vision.
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some water
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Fig. 3. An example of service scenarios.
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Fig. 4. Accuracy rate for various numbers of Visual Word k: (a) Maximum
rate is 89.3% with fisher vector, k=200 (b) Maximum rate is 96.2% with fisher
vector, k=200.

In this section, we assume the scenario for taking a
”water-related” object via oral instruction described above,
and demonstrate the effectiveness of the fourth person sensing
combining the first and third-person sensors.

A. System configuration

We built a distributed processing system for a forth person
sensing consisting of a smart glass and a processing server.

1) Smart glass: We utilized a Moverio BT-200AV (Epson)
smart glass for capturing a first-person images. Moverio is
equipped with Android OS, an overlay display, a camera,
and a microphone, and is able to capture first-person images
and voice at the same time. Captured images and voice are
compressed and transmitted to a processing server with a frame
rate of captured video periodically. The information such as
the server status and the recognized action is overlayed to the
display of the Moverio to confirm the processing results.

2) Processing server: The processing server recognizes the
user’s action periodically, and it suggests candidate objects
after the server receives user’s voice. Both processes are
explained in the following section.

IV. UNDERSTANDING A USER’S REQUEST

In this section, firstly we explain several methods, which
are commonly used for activity recognition [8], [9]. Secondly,
we describe the way how to select the correct one from
multiple objects, which are candidates based on the user’s
voice commands.

A. Activity recognition using the first person vision

In this section, first we describe methods to extract local
features from videos, followed by three feature encoding meth-
ods for more efficient representation of motion information
in videos. Then we show experimental results of the activity

recognition. In the video datasets there are five categories: (i)
reading a book, (ii) eating, (iii) watching a tree, (iv) watching
a robot, and (v) looking around.

1) Feature extraction: We utilize the Space-Time Interest
Points (STIP), which was proposed by Laptev [7], as a
local feature detector, and we describe feature vectors using
Histogram of Optical Flow (HOF) and Histogram of Oriented
Gradients (HOG). After extracting feature vectors, we apply
the principal component analysis (PCA) to original feature
vectors, while keeping 95 % contribution rate, for dimension
reduction.

For a more efficient representation of motion information
in videos, we employ the concept of feature encoding. More
specifically, we use three encoding methods: (i) visual words
[10], (ii) vector of locally aggregated descriptors (VLAD) [12],
and (iii) fisher vector [11].

2) Activity recognition: We collected first-person videos
using the camera of the Moverio. Each class has 50 sequences,
thus totally there are 250 (=50×5) sequences. Each sequence
is 10 seconds with 30 fps frame rate, and image resolution is
320 × 240. After we obtain encoded feature vectors from all
sequences, we utilize Linear Support Vector Machine (Linear
SVM) for activity recognition. Here, we used 2-folds for
evaluations. The mean classification accuracy was obtained by
repeating this random training-test splits for 100 times. The
number of clusters in visual words, which is used for the three
encoding methods, is changed as 10, 20, 50, 100, and 200.

Figure 4 shows the results of each feature encoding method
and each feature vector. From these results, we can see that
the results of HOG descriptor showed better performance than
those of HOF descriptor. Moreover, Fisher Vector shows the
best performance among all encoding methods. Thus in the
following experiments, we use HOG as a feature descriptor
and Fisher Vector as a feature encoding method.

B. Understanding a user’s request

In this system we take the advantage of ”tag” information,
which is assigned to each object stored in TMS database.
Tag information of an object consists of keywords which
explain the object. For example tags of ”drink”, ”tea”, and
”water” are assigned to a bottle of tea. Each activity also
has tag information, so that we can count the number of
tag information, which is the same tag information of the
activity, at each candidate object. We then give priority to
each candidate object, which is proportional to the number
of counted tag.

V. EXPERIMENT

A. Experimental settings

We explain experimental settings to evaluate the proposed
system. A user wearing the Moverio asks to a robot to give him
water, while doing three different activities, ”reading a book”,
”eating” and ”watching a tree”. A service robot gives him the
correct one he wants, depending on his request. We assume
that a canned coffee is the right one for ”reading a book”, a
bottle of tea for ”eating”, and a watering pot for ”watching a
tree”. Table I shows a list of tag information of each activity,
and Table II shows object information related to water.
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Bring me some water

Would you need a cancoffee ?

Bring me some water

Would you need a green tea bottle ?
Bring me some water

Would you need a watering pot ?

(a) Reading a book (b) Eating a meal (c) Gazing at a tree

Fig. 5. Experiment: Figures on upper row shows actual images and a user did some activities. Figures on lower row shows the screen of wearable camera.
Recognized results are shown as a ”User Activity” (red circles)

TABLE I. TAGS ASSOCIATING TO ACTIVITIES

Activity Tag

read a book drink, coffee
eat a meal drink, tea

gaze at a tree pot

TABLE II. OBJECTS STORED IN THE DATABASE

Category Name Tag

Coffee cancofee drink, coffee, water
Tea greentea bottle drink, tea, water

Watering Pot watering pot pot, water

B. Experimental results

We explain experimental results of the three activities.
Figure 5 (a) shows an actual image of ”reading a book” and the
system estimated the user’s activity as ”read a book”, which is
shown in ”User Activity” with red circle. After the user asked
the service robot to bring water for him, the robot successfully
chose a canned coffee. Figure 5 (b) shows the actual image
of ”eating”, and his activity was estimated as ”eat a meal”.
After he asked the service robot to bring water for him, the
robot successfully chose a bottle of green tea. Figure 5 (c)
shows the actual image of ”watching a tree”, and his activity
was estimated as ”gaze at a tree”. After he asked the service
robot to bring water for him, the robot successfully chose a
watering pot. These experimental results show that the system
could successfully understand the user’s request based on his
activity, even though there are some ambiguities and multiple
candidates in the scene.

VI. CONCLUSIONS

This paper introduced a new concept of the fourth-person
sensing, which combines conventional second and third person
sensing for a service robot with the first-person sensing. As an
example scenario of the fourth-person sensing, we focused on
an ambiguous verbal communication with a service robot, and
we developed a system which combines first and third-person
sensing. Experimental results showed that the effectiveness of
the proposed system and we confirmed that the fourth-person
sensing contributes for more accurate understandings of user’s
requests.

The proposed system for the fourth-person sensing does not
include the second-person sensing yet. Thus the future work
includes combining first, second, and third-person sensing, and

developing a system for much more accurate understanding of
a user’s intention and a context of the scene.
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