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Abstract—This paper introduces the concept of first-person
animal activity recognition, the problem of recognizing activities
from a view-point of an animal (e.g., a dog). Similar to first-person
activity recognition scenarios where humans wear cameras, our
approach estimates activities performed by an animal wearing a
camera. This enables monitoring and understanding of natural
animal behaviors even when there are no people around them. Its
applications include automated logging of animal behaviors for
medical/biology experiments, monitoring of pets, and investiga-
tion of wildlife patterns. In this paper, we construct a new dataset
composed of first-person animal videos obtained by mounting a
camera on each of the four pet dogs. Our new dataset consists of
10 activities containing a heavy/fair amount of ego-motion. We
implemented multiple baseline approaches to recognize activities
from such videos while utilizing multiple types of global/local
motion features. Animal ego-actions as well as human-animal
interactions are recognized with the baseline approaches, and we
discuss experimental results.

I. INTRODUCTION

First-person activity recognition (i.e., recognition of activi-
ties from egocentric videos) is receiving an increasing amount
of attention from computer vision researchers. In the first-
person computer vision research, the images/videos obtained
are in a viewpoint of a person wearing a camera, and its
objective is to analyze objects around the person, understand
activities performed by the person, and predict his/her inten-
tion. Similar to first-person computer vision works focusing on
humans, we propose the new concept of first-person animal
computer vision focusing on animals. Particularly, in first-
person animal activity recognition, the approach is required to
classify activities performed by an animal wearing a camera.
This enables automated understanding of what animals are
doing, and this can be done regardless of the presence of
the humans around them. The concept can be applied to a
wide range of animal studies, including wildlife. To the best
of our knowledge, this is the first paper such a concept is being
introduced.

Different characteristics between human and animal make
first-person animal videos unique: (i) moving behavior - biped
versus quadruped walk, and (ii) daily activity motion - the
more prevalent use of hands by humans (e.g., eating). In
addition, since animals, such as dogs and cats have a nature
to move dynamically compared with humans, first-person
animal videos may contain a huge amount of ego-motion. To
better understand the difficulties of first-person animal activity
recognition, we provide a dataset composed of first-person

Fig. 1. (a) The setup of the dog, (b) example snapshot images captured
while the dog was chasing a ball (in the first frame, the dog covers half of
the image, since he stood up).

animal videos obtained by mounting a camera on each of the
four dogs and discuss experiments with baseline approaches.

The dataset contains 10 different types of activities, in-
cluding activities performed by the dog himself/herself (e.g.,
running, body shaking, etc), interactions between people and
the dog (e.g., petting, feeding, etc), and activities performed by
people or cars (e.g., approaching the dog). Figure 1 shows the
setup of a dog and example images captured while the dog was
chasing a ball. Videos of these three categories of activities
tend to display different visual characteristics, implying that
multiple types of features are necessary to correctly capture
their motion information: (i) global features are necessary
for the first type of activities mainly composed of the dog’s
motion, (ii) both global and local features are useful for the



Fig. 2. Ten classes of activities in our dataset. (a) playing with a ball, (b) waiting for a car to passed by, (c) drinking water, (d) feeding, (e) turning dog’s head
to the left, (f) turning dog’s head to the right, (g) petting, (h) shaking dog’s body by himself, (i) sniffing, and (j) walking.

second type composed of the combination of actions by people
and the dog, and (iii) local features are suitable for the third
type composed of people or car motion.

Multiple baseline approaches are implemented and tested
with our new dataset, and we present their results in this
paper. In the baseline approaches, five types of global and
local features, which are common in first-person activity
recognition, are extracted from the first-person animal videos.
More specifically, two global features are obtained from dense
optical flows [1] and local binary patterns [2], and three sparse
spatio-temporal features are extracted as local features, based
on a cuboid feature detector [3] and a STIP detector [4]. For a
more efficient representation of motion information in videos,
we employ the concept of visual words. Finally, for activity
recognition, we use SVM classifiers with non-linear kernels.

We emphasize that some of the first-person videos in
our dataset display an extreme amount of ego-motion, which
is unobservable in previous video datasets. Our dataset is
composed of various types of videos with very heavy ego-
motion and (almost) without any ego-motion. This makes us
believe that our dataset will help general understanding/study
of ‘egocentric videos’ by covering extreme cases. We also
believe that our videos may assist development of approaches
for first-person recognition of ‘human’ activities with heavy
ego-motion (e.g., sports) by serving as their testbed.

A. Previous works

Low-cost high-quality wearable cameras have been avail-
able in the market for more than 6 years. Thanks to this, the
first-person video analysis have received a lot of attention in
the computer vision community. In the first-person vision the
study of daily activities are popular topic [5] [6]. Fathi et
al. [7] analyzed the cooking activity based on the consistent
appearance of objects, hands, and actions. Different from their
work, Kitani et al. [8] analyzed sports activities from the first-
person video using motion-based histograms. Ryoo et al. [1]
recognized interaction-level human activities using local and
global motion features. Motivated by the above works focusing
on the first-person vision, this paper proposes the concept of
the first-person animal vision and the baseline algorithm to
recognize activities from first-person animal videos.

Different from a 3rd-person vision, which most of previous
works focused on the past decade [9] [10] [11], the first-person
vision and the first-person animal vision involve a huge amount
of ego-motion such as running and jumping. This results in
not only local motion but also global motion in the captured
videos. As we mentioned above, activities contains either (i)
global motion or local motion, or (ii) both global motion and
local motion. In other words, different features are optimal
for different types of activity. Thus features from both local
motion and global motion should be integrated optimally. For
the purpose of combining multiple features which are extracted
from the first-person video, Ryoo et al. [1] proposed a method
based on a multi-channel version of histogram intersection
kernel. Laptev also utilized a multi-channel χ2 kernel [10] to
combine features, which are obtained from a 3rd-person video.

In the baseline approaches for the first-person animal
activity recognition, we utilized multi-channel kernels [1] [10].
To our knowledge, our paper is the first paper to recognize
activities from an animal’s viewpoint.

II. FIRST-PERSON ANIMAL VIDEO DATASET

We construct a new first-person animal video dataset,
named ‘DogCentric Activity Dataset’. We attached a GoPro
camera to the back of each of the four dogs, and Fig. 1 (a)
shows an example snapshot of a dog. The four dogs have
different owners, and their owners took them on a walk to
their familiar walking routes. The walking routes are in various
environments, such as residential areas, a park along a river, a
sand beach, a field, streets with traffic, etc. Thus even though
different dogs do the same activity, their background varies.

The video contains various activities, and we chose 10
activities of interest as our target activities. ‘Playing with
a ball’, ‘waiting for a car to passed by’, ‘drinking water’,
‘feeding’, ‘turning dog’s head to the left’, ‘turning dog’s
head to the right’, ‘petting’, ‘shaking dog’s body by himself’,
‘sniffing’, and ‘walking’ are the activities of importance we
chose to recognize. Figure 2 shows example snapshots of the
activities in our dataset. Figure 3 shows example sequences
of frames of ‘playing with a ball’, ‘shaking dog’s body by
himself’, and ‘waiting for a car to passed by’. Each activity
involves both local motion and global motion. For example in



Fig. 3. Example sequences of frames of (a) ‘playing with a ball’, (b) ‘shaking the dog’s body by himself’ and (c) ‘waiting for a car to passed by’.

the category of ‘waiting for a car to passed by’, the car moving
in video is considered as local motion. At the same time the
dog also moves his body, which produces global motion. In
the category of ‘feed’, the owner produces moves his hands to
give foods to the dog, and at the same time the dog jumped to
get his foods. These two motions produces both local motion
and global motion.

The videos are in 320 × 240 image resolution, 48 frames
per second. Each continuous video is temporally segmented
into multiple videos, so that each video contains a single
activity. The number of activities for each dog is shown in
Table I, and the total number of video segments in the dataset
is 209.

TABLE I. THE NUMBER OF VIDEOS OF ALL ACTIVITIES IN
‘DOGCENTRIC ACTIVITY DATASET’

Dog A Dog B Dog C Dog D Total
(category)

Ball play 6 5 3 0 14
Car 7 1 14 4 26

Drink 5 2 2 1 10
Feed 7 3 8 7 25

Turn head 8 4 3 6 21
(left)

Turn head 7 2 4 5 18
(right)

Pet 8 4 8 5 25
Body shake 8 2 3 5 18

Sniff 8 7 7 5 27
Walk 7 4 7 7 25

Total (dog) 71 34 59 45 209

As shown in Figs. 1 (b), 3 (a), and 3 (b), the dog’s motion
induces a huge amount of ego-motion. On the other hand,
Fig. 3 (c) shows that the amount of ego-motion is relatively

small. We quantitatively evaluated the amount of ego-motion
displayed in each activity, by estimating rotation angle between
frames. Rotation angles are obtained by estimating fundamen-
tal matrix between frames, followed by decomposition into
rotation matrix, translation vector, and intrinsic parameters.
We randomly choose 3 video segments of each activity, and
calculated average angle and standard deviation of estimated
angles at each activity as shown in Fig. 4 (a). In Fig. 4 (a), the
category of ‘All’ shows average angle and standard deviation
of all activities. We also evaluated other two state-of-the-art
first-person video datasets and compared them with ours: one
is sports activities [8] and the other is JPL-Interaction dataset
[1] containing interaction-level activities. The frame rate of
the two datasets is 30 Hz, so we interpolate linearly estimated
rotation angles into 48 Hz.

The results in Fig. 4 confirm that (1) our new dataset is
a good mixture of heavy ego-motion videos and low ego-
motion videos, (2) some of our videos display an extreme
amount of ego-motion much greater than previous datasets,
and (3) motion variance in our videos in general is quite
high (i.e., motion is very dynamic) compared to previous
datasets. For instance, the results of the sports activity dataset
[8] shows that some of its activities have a fair amount of
ego-motion (although not as heavy as our ‘shaking’ and ‘ball’
activity). However, its variance is rather small. The results of
JPL-Interaction dataset shows that ‘punching’ has heavy ego-
motion and high variance, but variance of the other activities
are very small (i.e., they are less dynamic).

III. FEATURE EXTRACTION

In this section, we explain motion features we extracted
from our first-person animal videos. We utilize a total of five
types of features, two global motion descriptors and three local
motion descriptors, which are explained in the subsections
below.



Fig. 4. Ego-motion amount comparison: average value and standard deviations of estimated rotation angles. A higher mean value indicates that the activity
contains a greater amount of ego-motion (i.e., heavier). A higher standard deviation indicates that videos of the activity tends to contain dynamic ego-motion,
instead of static/monotonic/periodic motion. We are able to observe that ego-motion in our dog dataset is heavier and more dynamic than the previous datasets
in general. Particularly, our ’ball play’ and ’shaking’ show an extreme amount of ego-motion.

A. Feature extraction

In this subsection, we discuss motion features to represent
global motion and local motion in first-person animal videos.
In the next subsection, we will cluster features to form visual
words and obtain histogram representations.

1) Global motion descriptors: Our approach describes
global motion in a first-person animal videos using (1) dense
optical flows and (2) local binary patterns (LBP).

The global motion descriptor of the optical flows is defined
as a histogram of extracted optical flows as described in [1].
Depending on location and direction, the observed optical
flows are separated into categories; and the number of flows
in each category is counted. As for location, each scene is
divided into a grid of s by s (e.g., 3 by 3), and for direction, 8
representative motion directions are considered. Thus, it results
in a histogram of optical flow with s-by-s-by-8 bins. The
descriptor in each grid is constructed by the sum of optical
flows in a given time interval (e.g., 0.2 seconds). The left
column on Fig. 5 shows example images of global motion
descriptors of the optical flows for two activities ‘body shake’
and ‘ball play’.

The local binary pattern (LBP) [2] is appearance-based
features, which showed good performance in analysis and
classification of gray scale images. We use the LBP as a
global motion descriptor in our method. The LBP is a local
transformation that contains the relations between pixel values
in a neighborhood of a reference pixel, and in our videos
we extracted rotation-invariant LBP [12]. The LBP feature
is calculated as a local histogram of quantized local binary
patterns, in our case 256 bins at each pixel. The system places
each of the computed LBP features into one of the predefined
s-by-s-by-256-by-t bins, where we spatially divide an image
into s by s grids and t is the number of temporal windows
which is explained below. At each grid the LBP features are
collected in a fixed time duration (e.g., 0.2 seconds), and
this results in s-by-s-by-256 bins. To generate motion feature
from LBP features, we concatenate s-by-s-by-256 bins for t
times (e.g., t=2). We apply a dimensionality reduction method
(the principal component analysis) to compute the LBP-based

global motion descriptor having 100 dimensions.

Fig. 5. (a) Example motion descriptors for ’body shake’. Left column shows
global motion descriptor of the optical flows, and right column shows local
motion descriptor of the cuboids. Different color shows different cuboids. Note
that features are extracted from spatio-temporal patches. (b) example motion
descriptors for ’ball play’. Left column shows global motion descriptor of the
optical flows, and right column shows local motion descriptor of the cuboids.

2) Local motion descriptors: We extract multiple types of
features capturing local motion information in first-person ani-



mal videos and use them as our descriptors. More specifically,
sparse 3D XYT spatio-temporal features are extracted. The
video is interpreted as a 3D volume of 2D XY frames in
sequence along the time dimension T (thus forming a 3D XYT
volume). A spatio-temporal feature extractor searches for a
set of small XYT patches which contains interest points with
salient motion changes inside. We have chosen a cuboid feature
detector [3] and a STIP detector [4] as our spatio-temporal
feature extractors. As a feature descriptor for cuboids, we use
normalized pixel values. As a feature descriptor for STIP, we
use histograms of oriented gradients (HOG) and histograms
of optical flow (HOF). We apply a dimensionality reduction
method to compute our local motion descriptors having 100
dimensions. Figures on right column on Fig. 5 show example
images of local motion descriptors of cuboids, for ’body shake’
and ’ball play’. In this figure different color shows different
types of cuboids.

B. Visual words

For a more efficient representation of motion information
in videos, we employ the concept of visual words. We use k-
means clustering; each motion descriptor is interpreted as an
occurrence of a visual word (one of the w possible) (w=500).

After clustering motion descriptors and obtaining the visual
words, each video vi gets associated a computed histogram,
representing its motion. The histogram Hi is a w dimensional
vector Hi=[hi1hi2 . . . hiw], in which him is the number of mth
visual words identified in the video vi.

The construction of visual words takes place separately
for all local and global motion descriptors. Thus, five his-
tograms are obtained: two histograms are obtained from global
motion descriptors (optical flow and LBP) and three are
obtained from local motion descriptors (Cuboids, STIP(HOG),
and STIP(HOF)). The feature vector xi is defined as xi =
[H1

i ;H
2
i ;H

3
i ;H

4
i ;H

5
i ], in which H1

i ∼ H5
i stands for the

histograms of the optical flow, LBP, cuboids, STIP(HOG), and
STIP(HOF), respectively.

IV. CLASSIFICATION

We use SVM classifiers to recognize first-person animal
activities. A kernel k(xi, xj) is a function defined to model
distance between two vectors xi and xj . Learning a classifier
(SVMs) with kernel function enables the classifier to estimate
better decision boundaries. As we explain in our experiments
section, different features are optimal for different types of
activity. Thus, utilizing these multiple types of global/local
motion features in an efficient way in terms of a non-linear
kernel function is extremely crucial for the reliable recognition
of activities, and we utilize multi-channel kernels proposed in
[1] [10] for combining multiple feature vectors.

V. EXPERIMENTS

In this section, we implement the baseline approaches and
evaluate their performances on our new dataset.

A. Implementation

To obtain visual words, we randomly selected one video
segment from each activity and used all selected video seg-
ments for k-means clustering. For activity recognition, the

selected video segments were removed from the dataset and the
rest of video segments were used. We use a repeated random
sub-sampling validation to measure the classification accuracy
of the baseline approaches. At each round, we randomly
selected half video sequences of each activity from our dataset
as training dataset and use the rest of sequences for the testing.
The mean classification accuracy was obtained by repeating
this random training-test splits for 100 times. In addition to two
state-of-the art multi-channel kernels [1] [10], we implemented
two baseline kernels (linear kernel and RBF kernel). The two
multi-channel kernels are a multi-channel χ2 kernel [10] and
a multi-channel histogram intersection kernel [1], which are
defined as follows.

K(xi, xj) = exp(−
N∑

n=1

Dn(H
n
i , H

n
j )) (1)

where Dn(H
n
i , H

n
j ) is the χ2 kernel [10] is defined as

Dn(H
n
i , H

n
j ) =

1

2Mn

w∑
m=1

(him − hjm)2

him + hjm
. (2)

Here, Mn is the mean distance between training samples. In
[1], Dn(H

n
i , H

n
j ) is the histogram distance defined as

Dn(H
n
i , H

n
j ) = 1−

∑w
m=1min(him, hjm)∑w
m=1max(him, hjm)

. (3)

A variance in each kernel was chosen as a value which showed
the best performance with training datasets.

B. Evaluation

We first apply the χ2 kernel to each feature type sep-
arately. The motivation is to evaluate the performance of
each individual feature type on recognition of activities, and
investigate their characteristics. Figures 6 (a) ∼ (e) show the
confusion matrix of optical flow, LBP, cuboids, STIP(HOG),
and STIP(HOF), respectively. The figures show that different
features are suitable for different types of activity. For example
STIP(HOF) performs better on activities of ‘walk’ than other
features. On the other hand cuboids works good on an activity
of ’pet’, which the STIP(HOF) performs worse than cuboids.
The average classification accuracies of the features were 41.7
% (optical flow), 34.5 % (LBP), 55.3 % (cuboids), 48.6 %
(STIP(HOG)), and 51.2 % (STIP(HOF)).

Next, we integrate all five features using a linear kernel and
three non-linear kernels (RBF kernel, multi-channel χ2 kernel
[10], and multi-channel histogram intersection kernel [1]).
Since all five features have different scale, we normalized these
features. Table II shows the average classification accuracies
of all kernels. These results suggest that the multi-channel χ2

kernel successfully integrate global and local motion features,
compared with the other three kernels. Figure 6 (f) shows the
confusion matrix of all features, and its average classification
accuracy was 60.5 %. This result shows that the kernel
successfully integrate optimal features for each activity.

VI. CONCLUSION

In this paper, we provided the dataset composed of first-
person animal videos and the baseline algorithms. Experimen-
tal results of the baseline algorithms showed different descrip-



Fig. 6. Confusion matrices of (a) global motion descriptor (optical flow), (b) global motion descriptor (LBP), (c) local motion descriptor (cuboids), (d) local
motion descriptor (STIP(HOF)), (e) local motion descriptor (STIP(HOG)), (f) combination of all descriptors.

TABLE II. COMPARISON OF THE CLASSIFICATION ACCURACIES OF
LINEAR KERNEL, RBF KERNEL, MULTI-CHANNEL χ2 KERNEL, AND

MULTI-CHANNEL HISTOGRAM INTERSECTION KERNEL.

Classification accuracy [%]
Linear kernel 52.6
RBF kernel 54.2

Multi-channel χ2 kernel 60.5
Histogram intersection 57.3

tors characterized different activities and the combination of
all descriptors achieves a good performance.

The future work includes using multiple cameras on a dog.
The dataset was collected with a camera on the dog, and we
found out that the position of the camera clearly influences the
view. Mounting it on the back has the advantages of seeing
for example interactions with people, for example patting the
dog. On the other hand, it prevents from seeing exactly in
front of the dog, for example what food is the dog eating.
In that case a camera mounted on the dog collar, it offers a
better view. However that does not allow to see the interaction
from above, as is the case with the humans who approach the
dog from above. Thus, more than one camera may be needed
for a better immersion in the dog environment. Certainly this
needs to be as little intrusive as possible. Having more than
one GoPro size camera does not appear a good idea, but rather
having miniaturized cameras, such as button-size camera.
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